Your browser doesn't support javascript.
loading
Development of Magnetically Active Scaffolds for Bone Regeneration.
Díaz, Esperanza; Valle, Mᵃ Blanca; Ribeiro, Sylvie; Lanceros-Mendez, Senentxu; Barandiarán, José Manuel.
Afiliación
  • Díaz E; Escuela de Ingeniería de Bilbao, Departamento de Ingeniería Minera, Metalúrgica y Ciencia de Materiales, Universidad del País Vasco (UPV/EHU), 48920 Portugalete, Spain. esperanza.diaz@ehu.eus.
  • Valle MB; BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain. esperanza.diaz@ehu.eus.
  • Ribeiro S; Facultad de Ciencia y Tecnología, Departamento de Electricidad y Electrónica, University of the Basque Country (UPV/EHU), Sarriena s/n, 48940 Leioa, Spain. mb.valle@ehu.eus.
  • Lanceros-Mendez S; Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal. s.ribeiro@bcmaterials.es.
  • Barandiarán JM; Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal. s.ribeiro@bcmaterials.es.
Nanomaterials (Basel) ; 8(9)2018 Aug 30.
Article en En | MEDLINE | ID: mdl-30200267
ABSTRACT
This work reports on the synthesis, with the thermally induced phase separation (TIPS) technique, of poly (l-lactide) (PLLA) scaffolds containing Fe-doped hydroxyapatite (FeHA) particles for bone regeneration. Magnetization curves and X-ray diffraction indicate two magnetic particle phases FeHA and magnetite Fe3O4. Magnetic nanoparticles (MNPs) are approximately 30 ± 5 nm in width and 125 ± 25 nm in length, and show typical ferromagnetic properties, including coercivity and rapid saturation magnetization. Scanning electron microscopy (SEM) images of the magnetic scaffolds reveal their complex morphology changes with MNP concentration. Similarly, at compositions of approximately 20% MNPs, the phase separation changes, passing from solid⁻liquid to liquid⁻liquid as revealed by the hill-like structures, with low peaks that give the walls in the SEM images a surface pattern of micro-ruggedness typical of nucleation mechanisms and growth. In vitro degradation experiments, carried out for more than 28 weeks, demonstrated that the MNPs delay the scaffold degradation process. Cytotoxicity is appreciated for FeHA content above 20%.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nanomaterials (Basel) Año: 2018 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nanomaterials (Basel) Año: 2018 Tipo del documento: Article País de afiliación: España