Your browser doesn't support javascript.
loading
Automated Neuron Detection in High-Content Fluorescence Microscopy Images Using Machine Learning.
Mata, Gadea; Radojevic, Miroslav; Fernandez-Lozano, Carlos; Smal, Ihor; Werij, Niels; Morales, Miguel; Meijering, Erik; Rubio, Julio.
Afiliación
  • Mata G; Department of Mathematics and Computer Science, University of La Rioja, Logroño, Spain. gadea.mata@unirioja.es.
  • Radojevic M; Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology, Erasmus University Medical Center, Rotterdam, Netherlands.
  • Fernandez-Lozano C; Department of Computer Science, University of A Coruña, A Coruña, Spain.
  • Smal I; Instituto de Investigación Biomédica de A Coruña, Complexo Hospitalario Universitario de A Coruña, A Coruña, Spain.
  • Werij N; Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology, Erasmus University Medical Center, Rotterdam, Netherlands.
  • Morales M; Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology, Erasmus University Medical Center, Rotterdam, Netherlands.
  • Meijering E; Molecular Cognition Laboratory, Biophysics Institute, CSIC-UPV/EHU, Campus Universidad del País Vasco, Leioa, Spain.
  • Rubio J; Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology, Erasmus University Medical Center, Rotterdam, Netherlands.
Neuroinformatics ; 17(2): 253-269, 2019 04.
Article en En | MEDLINE | ID: mdl-30215167
ABSTRACT
The study of neuronal morphology in relation to function, and the development of effective medicines to positively impact this relationship in patients suffering from neurodegenerative diseases, increasingly involves image-based high-content screening and analysis. The first critical step toward fully automated high-content image analyses in such studies is to detect all neuronal cells and distinguish them from possible non-neuronal cells or artifacts in the images. Here we investigate the performance of well-established machine learning techniques for this purpose. These include support vector machines, random forests, k-nearest neighbors, and generalized linear model classifiers, operating on an extensive set of image features extracted using the compound hierarchy of algorithms representing morphology, and the scale-invariant feature transform. We present experiments on a dataset of rat hippocampal neurons from our own studies to find the most suitable classifier(s) and subset(s) of features in the common practical setting where there is very limited annotated data for training. The results indicate that a random forests classifier using the right feature subset ranks best for the considered task, although its performance is not statistically significantly better than some support vector machine based classification models.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Procesamiento de Imagen Asistido por Computador / Aprendizaje Automático / Neuronas Tipo de estudio: Diagnostic_studies Límite: Animals / Humans Idioma: En Revista: Neuroinformatics Asunto de la revista: INFORMATICA MEDICA / NEUROLOGIA Año: 2019 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Procesamiento de Imagen Asistido por Computador / Aprendizaje Automático / Neuronas Tipo de estudio: Diagnostic_studies Límite: Animals / Humans Idioma: En Revista: Neuroinformatics Asunto de la revista: INFORMATICA MEDICA / NEUROLOGIA Año: 2019 Tipo del documento: Article País de afiliación: España
...