Your browser doesn't support javascript.
loading
Adoptive immunotherapy with haploidentical natural killer cells and Anti-GD2 monoclonal antibody m3F8 for resistant neuroblastoma: Results of a phase I study.
Modak, Shakeel; Le Luduec, Jean-Benoit; Cheung, Irene Y; Goldman, Debra A; Ostrovnaya, Irina; Doubrovina, Ekaterina; Basu, Ellen; Kushner, Brian H; Kramer, Kim; Roberts, Stephen S; O'Reilly, Richard J; Cheung, Nai-Kong V; Hsu, Katharine C.
Afiliación
  • Modak S; Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY.
  • Le Luduec JB; Immunology Program, Sloan-Kettering Institute for Cancer Research, New York, NY.
  • Cheung IY; Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY.
  • Goldman DA; Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY.
  • Ostrovnaya I; Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY.
  • Doubrovina E; Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY.
  • Basu E; Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY.
  • Kushner BH; Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY.
  • Kramer K; Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY.
  • Roberts SS; Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY.
  • O'Reilly RJ; Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY.
  • Cheung NV; Immunology Program, Sloan-Kettering Institute for Cancer Research, New York, NY.
  • Hsu KC; Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY.
Oncoimmunology ; 7(8): e1461305, 2018.
Article en En | MEDLINE | ID: mdl-30221057
ABSTRACT
Natural killer (NK) cell-mediated antibody-dependent toxicity is a potent mechanism of action of the anti-GD2 murine monoclonal antibody 3F8 (m3F8). Killer immunoglobulin-like receptor (KIR) and HLA genotypes modulate NK activity and are key prognostic markers in m3F8-treated patients with neuroblastoma. Endogenous NK-cells are suppressed in the setting of high tumor burden and chemotherapy. Allogeneic NK-cells however, demonstrate potent anti-neuroblastoma activity. We report on the results of a phase I clinical trial of haploidentical NK-cells plus m3F8 administered to patients with high-risk neuroblastoma after conditioning chemotherapy. The primary objective was to determine the maximum tolerated NK-cell dose (MTD). Secondary objectives included assessing anti-neuroblastoma activity and its relationship to donor-recipient KIR/HLA genotypes, NK function, and donor NK chimerism. Patients received a lymphodepleting regimen prior to infusion of haploidentical CD3-CD56+ NK-cells, followed by m3F8. Overall and progression free survival (PFS) were assessed from the time of first NK-cell dose. Univariate Cox regression assessed relationship between dose and outcomes. Thirty-five patients received NK-cells at one of five dose levels ranging from <1×106 to 50×106 CD3-CD56+cells/kg. One patient experienced grade 3 hypertension and grade 4 pneumonitis. MTD was not reached. Ten patients (29%) had complete or partial response; 17 (47%) had no response; and eight (23%) had progressive disease. No relationship was found between response and KIR/HLA genotype or between response and FcγRIII receptor polymorphisms. Patients receiving >10×106 CD56+cells/kg had improved PFS (HR 0.36, 95%CI 0.15-0.87, p = 0.022). Patient NK-cells displayed high NKG2A expression, leading to inhibition by HLA-E-expressing neuroblastoma cells. Adoptive NK-cell therapy in combination with m3F8 is safe and has anti-neuroblastoma activity at higher cell doses.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Oncoimmunology Año: 2018 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Oncoimmunology Año: 2018 Tipo del documento: Article