Your browser doesn't support javascript.
loading
Influence of fiber connectivity in simulations of cardiac biomechanics.
Gil, D; Aris, R; Borras, A; Ramirez, E; Sebastian, R; Vazquez, M.
Afiliación
  • Gil D; Computer Vision Center, Universitat Autonoma de Barcelona, Bellaterra, Spain. debora@cvc.uab.es.
  • Aris R; Barcelona Supercomputing Center, BSC-CNS, Barcelona, Spain.
  • Borras A; Computer Vision Center, Universitat Autonoma de Barcelona, Bellaterra, Spain.
  • Ramirez E; Computer Vision Center, Universitat Autonoma de Barcelona, Bellaterra, Spain.
  • Sebastian R; Universitat de Valencia, Valencia, Spain.
  • Vazquez M; Barcelona Supercomputing Center, BSC-CNS, Barcelona, Spain.
Int J Comput Assist Radiol Surg ; 14(1): 63-72, 2019 Jan.
Article en En | MEDLINE | ID: mdl-30232706
ABSTRACT

PURPOSE:

Personalized computational simulations of the heart could open up new improved approaches to diagnosis and surgery assistance systems. While it is fully recognized that myocardial fiber orientation is central for the construction of realistic computational models of cardiac electromechanics, the role of its overall architecture and connectivity remains unclear. Morphological studies show that the distribution of cardiac muscular fibers at the basal ring connects epicardium and endocardium. However, computational models simplify their distribution and disregard the basal loop. This work explores the influence in computational simulations of fiber distribution at different short-axis cuts.

METHODS:

We have used a highly parallelized computational solver to test different fiber models of ventricular muscular connectivity. We have considered two rule-based mathematical models and an own-designed method preserving basal connectivity as observed in experimental data. Simulated cardiac functional scores (rotation, torsion and longitudinal shortening) were compared to experimental healthy ranges using generalized models (rotation) and Mahalanobis distances (shortening, torsion).

RESULTS:

The probability of rotation was significantly lower for ruled-based models [95% CI (0.13, 0.20)] in comparison with experimental data [95% CI (0.23, 0.31)]. The Mahalanobis distance for experimental data was in the edge of the region enclosing 99% of the healthy population.

CONCLUSIONS:

Cardiac electromechanical simulations of the heart with fibers extracted from experimental data produce functional scores closer to healthy ranges than rule-based models disregarding architecture connectivity.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Simulación por Computador / Miocitos Cardíacos / Endocardio / Corazón / Modelos Cardiovasculares Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Int J Comput Assist Radiol Surg Asunto de la revista: RADIOLOGIA Año: 2019 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Simulación por Computador / Miocitos Cardíacos / Endocardio / Corazón / Modelos Cardiovasculares Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Int J Comput Assist Radiol Surg Asunto de la revista: RADIOLOGIA Año: 2019 Tipo del documento: Article País de afiliación: España
...