Your browser doesn't support javascript.
loading
Predation experience underlies the relationship between locomotion capability and survival.
Fu, Cheng; Cao, Zhen-Dong; Fu, Shi-Jian.
Afiliación
  • Fu C; Laboratory of Evolutionary Physiology and Behavior, Chongqing Normal University, Chongqing, China.
  • Cao ZD; Laboratory of Evolutionary Physiology and Behavior, Chongqing Normal University, Chongqing, China.
  • Fu SJ; Laboratory of Evolutionary Physiology and Behavior, Chongqing Normal University, Chongqing, China. Electronic address: shijianfu9@cqnu.edu.cn.
Article en En | MEDLINE | ID: mdl-30236912
ABSTRACT
The positive relationship between locomotion performance and survival under predation has long been suggested yet seldom demonstrated with direct evidence. We investigate the effects of predator exposure on locomotion capacity (both fast-start escape and critical swimming performance), survival under predation and the relationships between these factors in juvenile Chinese bream (Parabramis pekinensis). This study aims to test whether there is a positive relationship between the above factors and whether such relationships are context dependent (i.e., with or without 20 d of predator exposure). We found that predator-exposed Chinese bream showed higher rates of survival under predation and improved fast-start swimming performance compared with individuals not exposed to predation. At individual level, no relationship was found between survival and any locomotion performance component in the no-predator group, but mean fast-start swimming speed, maneuverability and responsiveness were all positively related to survival in the predator group after 20 d of exposure. This finding indicates that the recognition of and vigilance for predators achieved through predation experience can be crucial preconditions for prey to employ the fast-start escape response, especially to escape ambush predators. Furthermore, a tradeoff was observed between the critical and fast-start swimming performances in the predator group, but not in the no-predator group, which may have been due to the intensified competition throughout the entire locomotion-support system (e.g., energy, proportions of slow- and fast-twitch muscle fibers) between critical and fast-start swimming because the increased demand for fast-start escape capacity constrains (or compromises) critical swimming performance under the threat of predation.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Conducta Predatoria / Natación / Cyprinidae Límite: Animals Idioma: En Revista: Comp Biochem Physiol A Mol Integr Physiol Asunto de la revista: BIOLOGIA MOLECULAR / FISIOLOGIA Año: 2019 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Conducta Predatoria / Natación / Cyprinidae Límite: Animals Idioma: En Revista: Comp Biochem Physiol A Mol Integr Physiol Asunto de la revista: BIOLOGIA MOLECULAR / FISIOLOGIA Año: 2019 Tipo del documento: Article País de afiliación: China