Improved Stability of Atomic Layer Deposited Amorphous TiO2 Photoelectrode Coatings by Thermally Induced Oxygen Defects.
Chem Mater
; 30(4): 1199-1208, 2018 Feb 27.
Article
en En
| MEDLINE
| ID: mdl-30270988
Amorphous titanium dioxide (a-TiO2) combined with an electrocatalyst has shown to be a promising coating for stabilizing traditional semiconductor materials used in artificial photosynthesis for efficient photoelectrochemical solar-to-fuel energy conversion. In this study we report a detailed analysis of two methods of modifying an undoped thin film of atomic layer deposited (ALD) a-TiO2 without an electrocatalyst to affect its performance in water splitting reaction as a protective photoelectrode coating. The methods are high-temperature annealing in ultrahigh vacuum and atomic hydrogen exposure. A key feature in both methods is that they preserve the amorphous structure of the film. Special attention is paid to the changes in the molecular and electronic structure of a-TiO2 induced by these treatments. On the basis of the photoelectrochemical results, the a-TiO2 is susceptible to photocorrosion but significant improvement in stability is achieved after heat treatment in vacuum at temperatures above 500 °C. On the other hand, the hydrogen treatment does not increase the stability despite the ostensibly similar reduction of a-TiO2. The surface analysis allows us to interpret the improved stability to the thermally induced formation of O- species within a-TiO2 that are essentially electronic defects in the anionic framework.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Chem Mater
Año:
2018
Tipo del documento:
Article
País de afiliación:
Finlandia
Pais de publicación:
Estados Unidos