Your browser doesn't support javascript.
loading
Tissue-specific gene regulation corresponds with seasonal plasticity in female testosterone.
Bentz, Alexandra B; Dossey, Emma K; Rosvall, Kimberly A.
Afiliación
  • Bentz AB; Department of Biology, Indiana University, Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA. Electronic address: bentza@iu.edu.
  • Dossey EK; Department of Biology, Indiana University, Bloomington, IN 47405, USA.
  • Rosvall KA; Department of Biology, Indiana University, Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
Gen Comp Endocrinol ; 270: 26-34, 2019 01 01.
Article en En | MEDLINE | ID: mdl-30291863
ABSTRACT
Testosterone (T) is a sex steroid hormone that often varies seasonally and mediates trade-offs between territorial aggression and parental care. Prior work has provided key insights into the 'top-down' hypothalamic control of this seasonal plasticity in T, yet mechanisms acting outside of the brain may also influence circulating T levels. We hypothesized that peripheral mechanisms may be especially critical for females, because peripheral regulation may mitigate the costs of systemically elevated T. Here, we begin to test this hypothesis using a seasonal comparative approach, measuring gene expression in peripheral tissues in tree swallows (Tachycineta bicolor), a songbird with intense female-female competition and T-mediated aggression. We focused on the gonad and liver for their role in T production and metabolism, respectively, and we contrasted females captured during territory establishment versus incubation. During territory establishment, when T levels are highest, we found elevated gene expression of the hepatic steroid metabolizing enzyme CYP2C19 along with several ovarian steroidogenic enzymes, including the androgenic 5α-reductase. Despite these seasonal changes in gene expression along the steroidogenic pathway, we did not observe seasonal changes in sensitivity to upstream signals, measured as ovarian mRNA abundance of luteinizing hormone receptor. Together, these data suggest that differential regulation of steroidogenic gene expression in the ovary is a potentially major contributor to seasonal changes in T levels in females. Furthermore, these data provide a unique and organismal glimpse into tissue-specific gene regulation and its potential role in hormonal plasticity in females.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Hormonas Esteroides Gonadales / Testosterona / Colestenona 5 alfa-Reductasa Límite: Animals Idioma: En Revista: Gen Comp Endocrinol Año: 2019 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Hormonas Esteroides Gonadales / Testosterona / Colestenona 5 alfa-Reductasa Límite: Animals Idioma: En Revista: Gen Comp Endocrinol Año: 2019 Tipo del documento: Article