Your browser doesn't support javascript.
loading
Learning-based screening of hematologic disorders using quantitative phase imaging of individual red blood cells.
Kim, Geon; Jo, YoungJu; Cho, Hyungjoo; Min, Hyun-Seok; Park, YongKeun.
Afiliación
  • Kim G; Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea.
  • Jo Y; Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea; Tomocube, Inc., Daejeon 34051, Republic of Korea.
  • Cho H; Tomocube, Inc., Daejeon 34051, Republic of Korea.
  • Min HS; Tomocube, Inc., Daejeon 34051, Republic of Korea.
  • Park Y; Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea; Tomocube, Inc., Daejeon 34051, Republic of Korea. Electronic address: yk.park@kaist.ac.kr.
Biosens Bioelectron ; 123: 69-76, 2019 Jan 01.
Article en En | MEDLINE | ID: mdl-30321758
We present a rapid and label-free method for hematologic screening for diseases and syndromes, utilizing quantitative phase imaging (QPI) and machine learning. We aim to establish an efficient blood examination framework that does not suffer from the drawbacks of conventional blood assays, which are incapable of profiling single cells or require labeling procedures. Our method involves the synergistic employment of QPI and machine learning. The high-dimensional refractive index information arising from the QPI-based profiling of single red blood cells is processed to screen for diseases and syndromes using machine learning, which can utilize high-dimensional data beyond the human level. Accurate screening for iron-deficiency anemia, reticulocytosis, hereditary spherocytosis, and diabetes mellitus is demonstrated (>98% accuracy) using the proposed method. Furthermore, we highlight the synergy between QPI and machine learning in the proposed method by analyzing the performance of the method.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Holografía / Técnicas Biosensibles / Eritrocitos / Enfermedades Hematológicas Tipo de estudio: Diagnostic_studies / Screening_studies Límite: Humans Idioma: En Revista: Biosens Bioelectron Asunto de la revista: BIOTECNOLOGIA Año: 2019 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Holografía / Técnicas Biosensibles / Eritrocitos / Enfermedades Hematológicas Tipo de estudio: Diagnostic_studies / Screening_studies Límite: Humans Idioma: En Revista: Biosens Bioelectron Asunto de la revista: BIOTECNOLOGIA Año: 2019 Tipo del documento: Article Pais de publicación: Reino Unido