Your browser doesn't support javascript.
loading
Selective assembly and functionalization of miniaturized redox capacitor inside microdevices for microbial toxin and mammalian cell cytotoxicity analyses.
Shang, Wu; Liu, Yi; Kim, Eunkyoung; Tsao, Chen-Yu; Payne, Gregory F; Bentley, William E.
Afiliación
  • Shang W; Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA. bentley@umd.edu.
  • Liu Y; Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA.
  • Kim E; Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA.
  • Tsao CY; Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA. bentley@umd.edu and Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA.
  • Payne GF; Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA. bentley@umd.edu and Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA.
  • Bentley WE; Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA. bentley@umd.edu and Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA.
Lab Chip ; 18(23): 3578-3587, 2018 12 07.
Article en En | MEDLINE | ID: mdl-30351330
ABSTRACT
We report a novel strategy for bridging information transfer between electronics and biological systems within microdevices. This strategy relies on our "electrobiofabrication" toolbox that uses electrode-induced signals to assemble biopolymer films at spatially defined sites and then electrochemically "activates" the films for signal processing capabilities. Compared to conventional electrode surface modification approaches, our signal-guided assembly and activation strategy provides on-demand electrode functionalization, and greatly simplifies microfluidic sensor design and fabrication. Specifically, a chitosan film is selectively localized in a microdevice and is covalently modified with phenolic species. The redox active properties of the phenolic species enable the film to transduce molecular to electronic signals (i.e., "molectronic"). The resulting "molectronic" sensors are shown to facilitate the electrochemical analysis in real time of biomolecules, including small molecules and enzymes, to cell-based measurements such as cytotoxicity. We believe this strategy provides an alternative, simple, and promising avenue for connecting electronics to biological systems within microfluidic platforms, and eventually will enrich our abilities to study biology in a variety of contexts.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Pseudomonas aeruginosa / Toxinas Biológicas / Citotoxinas / Capacidad Eléctrica / Dispositivos Laboratorio en un Chip Límite: Humans Idioma: En Revista: Lab Chip Asunto de la revista: BIOTECNOLOGIA / QUIMICA Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Pseudomonas aeruginosa / Toxinas Biológicas / Citotoxinas / Capacidad Eléctrica / Dispositivos Laboratorio en un Chip Límite: Humans Idioma: En Revista: Lab Chip Asunto de la revista: BIOTECNOLOGIA / QUIMICA Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos