Your browser doesn't support javascript.
loading
On predicting epithelial mesenchymal transition by integrating RNA-binding proteins and correlation data via L1/2-regularization method.
Qiu, Yushan; Jiang, Hao; Ching, Wai-Ki; Ng, Michael K.
Afiliación
  • Qiu Y; College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, PR China. Electronic address: yushan.qiu@szu.edu.cn.
  • Jiang H; School of Mathematics, Renmin University of China, No. 59 Zhong Guan Cun Street, HaiDian District, Beijing, PR China. Electronic address: jiangh@ruc.edu.cn.
  • Ching WK; Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong. Electronic address: wching@hku.hk.
  • Ng MK; Department of Mathematics, Hong Kong Baptist University, Hong Kong. Electronic address: mng@math.hkbu.edu.hk.
Artif Intell Med ; 95: 96-103, 2019 04.
Article en En | MEDLINE | ID: mdl-30352711
Identifying tumor metastasis signatures from gene expression data at the whole genome level remains an arduous challenge, particularly so when the number of genes is huge and the number of experimental samples is small. We focus on the prediction of the epithelial-mesenchymal transition (EMT), which is an underlying mechanism of tumor metastasis, here, rather than on tumor metastasis itself, to avoid confounding effects of uncertainties derived from various factors. We apply an extended LASSO model, L1/2-regularization model, as a feature selector, to identify significant RNA-binding proteins (RBPs) that contribute to regulating the EMT. We find that the L1/2-regularization model significantly outperforms LASSO in the EMT regulation problem. Furthermore, remarkable improvement in L1/2-regularization model classification performance can be achieved by incorporating extra information, specifically correlation values. We demonstrate that the L1/2-regularization model is applicable for identifying significant RBPs in biological research. Identified RBPs will facilitate study of the underlying mechanisms of the EMT.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas de Unión al ARN / Transición Epitelial-Mesenquimal Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Artif Intell Med Asunto de la revista: INFORMATICA MEDICA Año: 2019 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas de Unión al ARN / Transición Epitelial-Mesenquimal Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Artif Intell Med Asunto de la revista: INFORMATICA MEDICA Año: 2019 Tipo del documento: Article Pais de publicación: Países Bajos