Your browser doesn't support javascript.
loading
Metabolic Maturation of Human Pluripotent Stem Cell-Derived Cardiomyocytes by Inhibition of HIF1α and LDHA.
Hu, Dongjian; Linders, Annet; Yamak, Abir; Correia, Cláudia; Kijlstra, Jan David; Garakani, Arman; Xiao, Ling; Milan, David J; van der Meer, Peter; Serra, Margarida; Alves, Paula M; Domian, Ibrahim J.
Afiliación
  • Hu D; From the Cardiovascular Research Center, Massachusetts General Hospital, Boston (D.H., A.L., A.Y., L.X., D.J.M., I.J.D.).
  • Linders A; Department of Biomedical Engineering, Boston University, MA (D.H.).
  • Yamak A; From the Cardiovascular Research Center, Massachusetts General Hospital, Boston (D.H., A.L., A.Y., L.X., D.J.M., I.J.D.).
  • Correia C; Experimental Cardiology, Utrecht University, The Netherlands (A.L.).
  • Kijlstra JD; From the Cardiovascular Research Center, Massachusetts General Hospital, Boston (D.H., A.L., A.Y., L.X., D.J.M., I.J.D.).
  • Garakani A; Harvard Medical School, Boston, MA (A.Y., I.J.D.).
  • Xiao L; iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal (C.C., M.S., P.M.A.).
  • Milan DJ; Instituto de, Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal (C.C., M.S., P.M.A.).
  • van der Meer P; University Medical Center Groningen, University of Groningen, The Netherlands (J.D.K., P.v.d.M.).
  • Serra M; Darisa, LLC, Saratoga, CA (A.G.).
  • Alves PM; From the Cardiovascular Research Center, Massachusetts General Hospital, Boston (D.H., A.L., A.Y., L.X., D.J.M., I.J.D.).
  • Domian IJ; From the Cardiovascular Research Center, Massachusetts General Hospital, Boston (D.H., A.L., A.Y., L.X., D.J.M., I.J.D.).
Circ Res ; 123(9): 1066-1079, 2018 10 12.
Article en En | MEDLINE | ID: mdl-30355156
ABSTRACT
RATIONALE Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are a readily available, robustly reproducible, and physiologically appropriate human cell source for cardiac disease modeling, drug discovery, and toxicity screenings in vitro. However, unlike adult myocardial cells in vivo, hPSC-CMs cultured in vitro maintain an immature metabolic phenotype, where majority of ATP is produced through aerobic glycolysis instead of oxidative phosphorylation in the mitochondria. Little is known about the underlying signaling pathways controlling hPSC-CMs' metabolic and functional maturation.

OBJECTIVE:

To define the molecular pathways controlling cardiomyocytes' metabolic pathway selections and improve cardiomyocyte metabolic and functional maturation. METHODS AND

RESULTS:

We cultured hPSC-CMs in different media compositions including glucose-containing media, glucose-containing media supplemented with fatty acids, and glucose-free media with fatty acids as the primary carbon source. We found that cardiomyocytes cultured in the presence of glucose used primarily aerobic glycolysis and aberrantly upregulated HIF1α (hypoxia-inducible factor 1α) and its downstream target lactate dehydrogenase A. Conversely, glucose deprivation promoted oxidative phosphorylation and repressed HIF1α. Small molecule inhibition of HIF1α or lactate dehydrogenase A resulted in a switch from aerobic glycolysis to oxidative phosphorylation. Likewise, siRNA inhibition of HIF1α stimulated oxidative phosphorylation while inhibiting aerobic glycolysis. This metabolic shift was accompanied by an increase in mitochondrial content and cellular ATP levels. Furthermore, functional gene expressions, sarcomere length, and contractility were improved by HIF1α/lactate dehydrogenase A inhibition.

CONCLUSIONS:

We show that under standard culture conditions, the HIF1α-lactate dehydrogenase A axis is aberrantly upregulated in hPSC-CMs, preventing their metabolic maturation. Chemical or siRNA inhibition of this pathway results in an appropriate metabolic shift from aerobic glycolysis to oxidative phosphorylation. This in turn improves metabolic and functional maturation of hPSC-CMs. These findings provide key insight into molecular control of hPSC-CMs' metabolism and may be used to generate more physiologically mature cardiomyocytes for drug screening, disease modeling, and therapeutic purposes.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Sulfonamidas / Diferenciación Celular / Alcaloides Indólicos / Miocitos Cardíacos / Disulfuros / Metabolismo Energético / Inhibidores Enzimáticos / Subunidad alfa del Factor 1 Inducible por Hipoxia / Células Madre Pluripotentes Inducidas / Aminoquinolinas Tipo de estudio: Prognostic_studies Límite: Animals / Humans / Male Idioma: En Revista: Circ Res Año: 2018 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Sulfonamidas / Diferenciación Celular / Alcaloides Indólicos / Miocitos Cardíacos / Disulfuros / Metabolismo Energético / Inhibidores Enzimáticos / Subunidad alfa del Factor 1 Inducible por Hipoxia / Células Madre Pluripotentes Inducidas / Aminoquinolinas Tipo de estudio: Prognostic_studies Límite: Animals / Humans / Male Idioma: En Revista: Circ Res Año: 2018 Tipo del documento: Article