Your browser doesn't support javascript.
loading
Biophysical Modeling for Brain Tissue Conductivity Estimation Using SEEG Electrodes.
IEEE Trans Biomed Eng ; 66(6): 1695-1704, 2019 06.
Article en En | MEDLINE | ID: mdl-30369435
OBJECTIVE: We aimed at providing an accurate estimation of human brain tissue electrical conductivity in clinico, using local, low-intensity pulsed stimulation. METHODS: Using the quasi-static approximation of Maxwell equations, we derived an analytical model of the electric field generated by intracerebral stereotactic-EEG (SEEG) electrodes. We coupled this electric field model with a model of the electrode-electrolyte interface to provide an explicit, analytical expression of brain tissue conductivity based on the recorded brain tissue response to pulse stimulation. RESULTS: We validated our biophysical model using saline solutions calibrated in electrical conductivity, rat brain tissue, and electrophysiological data recorded in clinico from two epileptic patients during SEEG. CONCLUSION: This new model-based method offers a fast and reliable estimation of brain tissue electrical conductivity by accounting for contributions from the electrode-electrolyte interface. SIGNIFICANCE: This method outperforms standard bioimpedance measurements since it provides absolute (as opposed to relative) changes in brain tissue conductivity. Application for diagnosis is envisioned since conductivity values strongly differ when estimated in the healthy versus hyperexcitable brain tissue.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Señales Asistido por Computador / Encéfalo / Electroencefalografía / Modelos Neurológicos Límite: Animals / Humans Idioma: En Revista: IEEE Trans Biomed Eng Año: 2019 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Señales Asistido por Computador / Encéfalo / Electroencefalografía / Modelos Neurológicos Límite: Animals / Humans Idioma: En Revista: IEEE Trans Biomed Eng Año: 2019 Tipo del documento: Article Pais de publicación: Estados Unidos