Your browser doesn't support javascript.
loading
Shear heating reconciles thermal models with the metamorphic rock record of subduction.
Kohn, Matthew J; Castro, Adrian E; Kerswell, Buchanan C; Ranero, César R; Spear, Frank S.
Afiliación
  • Kohn MJ; Department of Geosciences, Boise State University, Boise, ID 83725; mattkohn@boisestate.edu.
  • Castro AE; Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180.
  • Kerswell BC; Department of Geosciences, Boise State University, Boise, ID 83725.
  • Ranero CR; Instituto de Ciencias del Mar, Spanish National Research Council, 08003 Barcelona, Spain.
  • Spear FS; Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain.
Proc Natl Acad Sci U S A ; 115(46): 11706-11711, 2018 11 13.
Article en En | MEDLINE | ID: mdl-30373832
ABSTRACT
Some commonly referenced thermal-mechanical models of current subduction zones imply temperatures that are 100-500 °C colder at 30-80-km depth than pressure-temperature conditions determined thermobarometrically from exhumed metamorphic rocks. Accurately inferring subduction zone thermal structure, whether from models or rocks, is crucial for predicting metamorphic reactions and associated fluid release, subarc melting conditions, rheologies, and fault-slip phenomena. Here, we compile surface heat flow data from subduction zones worldwide and show that values are higher than can be explained for a frictionless subduction interface often assumed for modeling. An additional heat source--likely shear heating--is required to explain these forearc heat flow values. A friction coefficient of at least 0.03 and possibly as high as 0.1 in some cases explains these data, and we recommend a provisional average value of 0.05 ± 0.015 for modeling. Even small coefficients of friction can contribute several hundred degrees of heating at depths of 30-80 km. Adding such shear stresses to thermal models quantitatively reproduces the pressure-temperature conditions recorded by exhumed metamorphic rocks. Comparatively higher temperatures generally drive rock dehydration and densification, so, at a given depth, hotter rocks are denser than colder rocks, and harder to exhume through buoyancy mechanisms. Consequently--conversely to previous proposals--exhumed metamorphic rocks might overrepresent old-cold subduction where rocks at the slab interface are wetter and more buoyant than in young-hot subduction zones.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2018 Tipo del documento: Article Pais de publicación: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2018 Tipo del documento: Article Pais de publicación: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA