Deep learning enables automated scoring of liver fibrosis stages.
Sci Rep
; 8(1): 16016, 2018 10 30.
Article
en En
| MEDLINE
| ID: mdl-30375454
Current liver fibrosis scoring by computer-assisted image analytics is not fully automated as it requires manual preprocessing (segmentation and feature extraction) typically based on domain knowledge in liver pathology. Deep learning-based algorithms can potentially classify these images without the need for preprocessing through learning from a large dataset of images. We investigated the performance of classification models built using a deep learning-based algorithm pre-trained using multiple sources of images to score liver fibrosis and compared them against conventional non-deep learning-based algorithms - artificial neural networks (ANN), multinomial logistic regression (MLR), support vector machines (SVM) and random forests (RF). Automated feature classification and fibrosis scoring were achieved by using a transfer learning-based deep learning network, AlexNet-Convolutional Neural Networks (CNN), with balanced area under receiver operating characteristic (AUROC) values of up to 0.85-0.95 versus ANN (AUROC of up to 0.87-1.00), MLR (AUROC of up to 0.73-1.00), SVM (AUROC of up to 0.69-0.99) and RF (AUROC of up to 0.94-0.99). Results indicate that a deep learning-based algorithm with transfer learning enables the construction of a fully automated and accurate prediction model for scoring liver fibrosis stages that is comparable to other conventional non-deep learning-based algorithms that are not fully automated.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Procesamiento de Imagen Asistido por Computador
/
Diagnóstico por Imagen
/
Cirrosis Hepática
Tipo de estudio:
Diagnostic_studies
/
Prognostic_studies
Límite:
Animals
Idioma:
En
Revista:
Sci Rep
Año:
2018
Tipo del documento:
Article
País de afiliación:
Singapur
Pais de publicación:
Reino Unido