Your browser doesn't support javascript.
loading
Approaches to integrating genetic data into ecological networks.
Clare, Elizabeth L; Fazekas, Aron J; Ivanova, Natalia V; Floyd, Robin M; Hebert, Paul D N; Adams, Amanda M; Nagel, Juliet; Girton, Rebecca; Newmaster, Steven G; Fenton, M Brock.
Afiliación
  • Clare EL; School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.
  • Fazekas AJ; Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada.
  • Ivanova NV; The Arboretum, University of Guelph, Guelph, Ontario, Canada.
  • Floyd RM; Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada.
  • Hebert PDN; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
  • Adams AM; Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada.
  • Nagel J; Department of Biology, Texas A&M University, College Station, Texas.
  • Girton R; Center for Environmental Science, University of Maryland, Frostburg, Maryland.
  • Newmaster SG; School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.
  • Fenton MB; Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.
Mol Ecol ; 28(2): 503-519, 2019 01.
Article en En | MEDLINE | ID: mdl-30427082
ABSTRACT
As molecular tools for assessing trophic interactions become common, research is increasingly focused on the construction of interaction networks. Here, we demonstrate three key methods for incorporating DNA data into network ecology and discuss analytical considerations using a model consisting of plants, insects, bats and their parasites from the Costa Rica dry forest. The simplest method involves the use of Sanger sequencing to acquire long sequences to validate or refine field identifications, for example of bats and their parasites, where one specimen yields one sequence and one identification. This method can be fully quantified and resolved and these data resemble traditional ecological networks. For more complex taxonomic identifications, we target multiple DNA loci, for example from a seed or fruit pulp sample in faeces. These networks are also well resolved but gene targets vary in resolution and quantification is difficult. Finally, for mixed templates such as faecal contents of insectivorous bats, we use DNA metabarcoding targeting two sequence lengths (157 and 407 bp) of one gene region and a MOTU, BLAST and BIN association approach to resolve nodes. This network type is complex to generate and analyse, and we discuss the implications of this type of resolution on network analysis. Using these data, we construct the first molecular-based network of networks containing 3,304 interactions between 762 nodes of eight trophic functions and involving parasitic, mutualistic and predatory interactions. We provide a comparison of the relative strengths and weaknesses of these data types in network ecology.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Plantas / Ecología / Código de Barras del ADN Taxonómico / Insectos Límite: Animals País/Región como asunto: America central / Costa rica Idioma: En Revista: Mol Ecol Asunto de la revista: BIOLOGIA MOLECULAR / SAUDE AMBIENTAL Año: 2019 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Plantas / Ecología / Código de Barras del ADN Taxonómico / Insectos Límite: Animals País/Región como asunto: America central / Costa rica Idioma: En Revista: Mol Ecol Asunto de la revista: BIOLOGIA MOLECULAR / SAUDE AMBIENTAL Año: 2019 Tipo del documento: Article País de afiliación: Reino Unido