Your browser doesn't support javascript.
loading
Current ambient and elevated ozone effects on poplar: A global meta-analysis and response relationships.
Feng, Zhaozhong; Shang, Bo; Gao, Feng; Calatayud, Vicent.
Afiliación
  • Feng Z; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environm
  • Shang B; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
  • Gao F; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
  • Calatayud V; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing 100085, China; Fundación CEAM, c/Charles R. Darwin 14, Parque Tecnológico, 46980 Paterna, Valencia, Spain.
Sci Total Environ ; 654: 832-840, 2019 Mar 01.
Article en En | MEDLINE | ID: mdl-30453256
ABSTRACT
The effects of current and future elevated O3 concentrations (e[O3]) were investigated by a meta-analysis for poplar, a widely distributed genus in the Northern Hemisphere with global economic importance. Current [O3] has significantly reduced CO2 assimilation rate (Pn) by 33% and total biomass by 4% in comparison with low O3 level (charcoal-filtered air, CF). Relative to CF, an increase in future [O3] would further enhance the reduction in total biomass by 24%, plant height by 17% and plant leaf area by 19%. Isoprene emissions could decline by 34% under e[O3], with feedback implications in reducing the formation of secondary air pollutants including O3. Reduced stomatal conductance and lower foliar area might increase runoff and freshwater availability in O3 polluted areas. Higher cumulated O3 exposure over a threshold of 40 ppb (AOT40) induced larger reductions in Pn, total biomass and isoprene emission. Relationships of light-saturated photosynthesis rates (Asat), total biomass and chlorophyll content with AOT40 using a global dataset are provided. These relationships are expected to improve O3 risk assessment and also to support the inclusion of the effect of O3 in models addressing plantation productivity and carbon sink capacity.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ozono / Populus / Contaminantes Atmosféricos Tipo de estudio: Risk_factors_studies / Systematic_reviews Idioma: En Revista: Sci Total Environ Año: 2019 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ozono / Populus / Contaminantes Atmosféricos Tipo de estudio: Risk_factors_studies / Systematic_reviews Idioma: En Revista: Sci Total Environ Año: 2019 Tipo del documento: Article