Your browser doesn't support javascript.
loading
Functional analyses of heteromeric human PIEZO1 Channels.
Gnanasambandam, Radhakrishnan; Bae, Chilman; Ziegler, Lynn; Sachs, Frederick; Gottlieb, Philip A.
Afiliación
  • Gnanasambandam R; Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, United States of America.
  • Bae C; Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, United States of America.
  • Ziegler L; Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, United States of America.
  • Sachs F; Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, United States of America.
  • Gottlieb PA; Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, United States of America.
PLoS One ; 13(11): e0207309, 2018.
Article en En | MEDLINE | ID: mdl-30462693
ABSTRACT
PIEZO1 and PIEZO2 are mechanosensitive channels (MSCs) important for cellular function and mutations in them lead to human disorders. We examined how functional heteromers form between subunits of PIEZO1 using the mutants E2117K, E2117D, and E2117A. Homomers of E2117K do not conduct. E2117A homomers have low conductance with rapid inactivation, and those of E2117D have high conductance with slow inactivation. Pairing E2117K with E2117D or E2117A with E2117D gave rise to new channel species representing heteromers with distinct conductances. Whole-cell currents from co-expression of E2117A and E2117D fit well with a linear-combination model of homomeric channel currents suggesting that functional channels do not form from freely-diffusing, randomly-mixed monomers in-vitro. Whole-cell current from coexpressed PIEZO1/PIEZO2 also fit as a linear combination of homomer currents. High-resolution optical images of fluorescently-tagged channels support this interpretation because coexpressed subunits segregate into discrete domains.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Mutación Missense / Multimerización de Proteína / Canales Iónicos Límite: Humans Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Mutación Missense / Multimerización de Proteína / Canales Iónicos Límite: Humans Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2018 Tipo del documento: Article País de afiliación: Estados Unidos