Your browser doesn't support javascript.
loading
Climate Regimes Override Micro-Site Effects on the Summer Temperature Signal of Scots Pine at Its Northern Distribution Limits.
Lange, Jelena; Buras, Allan; Cruz-García, Roberto; Gurskaya, Marina; Jalkanen, Risto; Kukarskih, Vladimir; Seo, Jeong-Wook; Wilmking, Martin.
Afiliación
  • Lange J; Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany.
  • Buras A; Forest Ecology and Forest Management, Wageningen University and Research, Wageningen, Netherlands.
  • Cruz-García R; Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany.
  • Gurskaya M; Institute of Plant and Animal Ecology, UB of the Russian Academy of Sciences, Yekaterinburg, Russia.
  • Jalkanen R; Natural Resources Institute Finland (Luke), Rovaniemi Research Unit, Rovaniemi, Finland.
  • Kukarskih V; Institute of Plant and Animal Ecology, UB of the Russian Academy of Sciences, Yekaterinburg, Russia.
  • Seo JW; Department of Wood and Paper Science, College of Agriculture, Life and Environmental Sciences, Chungbuk National University, Cheongju, South Korea.
  • Wilmking M; Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany.
Front Plant Sci ; 9: 1597, 2018.
Article en En | MEDLINE | ID: mdl-30467508
ABSTRACT
Tree growth at northern boreal treelines is generally limited by summer temperature, hence tree rings serve as natural archives of past climatic conditions. However, there is increasing evidence that a changing summer climate as well as certain micro-site conditions can lead to a weakening or loss of the summer temperature signal in trees growing in treeline environments. This phenomenon poses a challenge to all applications relying on stable temperature-growth relationships such as temperature reconstructions and dynamic vegetation models. We tested the effect of differing ecological and climatological conditions on the summer temperature signal of Scots pine at its northern distribution limits by analyzing twelve sites distributed along a 2200 km gradient from Finland to Western Siberia (Russia). Two frequently used proxies in dendroclimatology, ring width and maximum latewood density, were correlated with summer temperature for the period 1901-2013 separately for (i) dry vs. wet micro-sites and (ii) years with dry/warm vs. wet/cold climate regimes prevailing during the growing season. Differing climate regimes significantly affected the temperature signal of Scots pine at about half of our sites While correlations were stronger in wet/cold than in dry/warm years at most sites located in Russia, differing climate regimes had only little effect at Finnish sites. Both tree-ring proxies were affected in a similar way. Interestingly, micro-site differences significantly affected absolute tree growth, but had only minor effects on the climatic signal at our sites. We conclude that, despite the treeline-proximal location, growth-limiting conditions seem to be exceeded in dry/warm years at most Russian sites, leading to a weakening or loss of the summer temperature signal in Scots pine here. With projected temperature increase, unstable summer temperature signals in Scots pine tree rings might become more frequent, possibly affecting dendroclimatological applications and related fields.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Front Plant Sci Año: 2018 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Front Plant Sci Año: 2018 Tipo del documento: Article País de afiliación: Alemania