Your browser doesn't support javascript.
loading
Computational aspects underlying genome to phenome analysis in plants.
Bolger, Anthony M; Poorter, Hendrik; Dumschott, Kathryn; Bolger, Marie E; Arend, Daniel; Osorio, Sonia; Gundlach, Heidrun; Mayer, Klaus F X; Lange, Matthias; Scholz, Uwe; Usadel, Björn.
Afiliación
  • Bolger AM; Institute for Biology I, BioSC, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany.
  • Poorter H; Forschungszentrum Jülich (FZJ) Institute of Bio- and Geosciences (IBG-2) Plant Sciences, Wilhelm-Johnen-Straße, 52428, Jülich, Germany.
  • Dumschott K; Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia.
  • Bolger ME; Institute for Biology I, BioSC, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany.
  • Arend D; Forschungszentrum Jülich (FZJ) Institute of Bio- and Geosciences (IBG-2) Plant Sciences, Wilhelm-Johnen-Straße, 52428, Jülich, Germany.
  • Osorio S; Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Seeland, Germany.
  • Gundlach H; Department of Molecular Biology and Biochemistry, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos, 29071, Málaga, Spain.
  • Mayer KFX; Plant Genome and Systems Biology (PGSB), Helmholtz Zentrum München (HMGU), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
  • Lange M; Plant Genome and Systems Biology (PGSB), Helmholtz Zentrum München (HMGU), Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
  • Scholz U; Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Seeland, Germany.
  • Usadel B; Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Seeland, Germany.
Plant J ; 97(1): 182-198, 2019 01.
Article en En | MEDLINE | ID: mdl-30500991
Recent advances in genomics technologies have greatly accelerated the progress in both fundamental plant science and applied breeding research. Concurrently, high-throughput plant phenotyping is becoming widely adopted in the plant community, promising to alleviate the phenotypic bottleneck. While these technological breakthroughs are significantly accelerating quantitative trait locus (QTL) and causal gene identification, challenges to enable even more sophisticated analyses remain. In particular, care needs to be taken to standardize, describe and conduct experiments robustly while relying on plant physiology expertise. In this article, we review the state of the art regarding genome assembly and the future potential of pangenomics in plant research. We also describe the necessity of standardizing and describing phenotypic studies using the Minimum Information About a Plant Phenotyping Experiment (MIAPPE) standard to enable the reuse and integration of phenotypic data. In addition, we show how deep phenotypic data might yield novel trait-trait correlations and review how to link phenotypic data to genomic data. Finally, we provide perspectives on the golden future of machine learning and their potential in linking phenotypes to genomic features.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Plantas / Genoma de Planta / Genómica / Estudios de Asociación Genética / Aprendizaje Automático / Fenómica Tipo de estudio: Prognostic_studies Idioma: En Revista: Plant J Asunto de la revista: BIOLOGIA MOLECULAR / BOTANICA Año: 2019 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Plantas / Genoma de Planta / Genómica / Estudios de Asociación Genética / Aprendizaje Automático / Fenómica Tipo de estudio: Prognostic_studies Idioma: En Revista: Plant J Asunto de la revista: BIOLOGIA MOLECULAR / BOTANICA Año: 2019 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido