Characterization of Recombinant His-Tag Protein Immobilized onto Functionalized Gold Nanoparticles.
Sensors (Basel)
; 18(12)2018 Dec 04.
Article
en En
| MEDLINE
| ID: mdl-30518079
The recombinant polyhistidine-tagged hemoglobin I ((His)6-rHbI) from the bivalve Lucina pectinata is an ideal biocomponent for a hydrogen sulfide (H2S) biosensor due to its high affinity for H2S. In this work, we immobilized (His)6-rHbI over a surface modified with gold nanoparticles functionalized with 3-mercaptopropionic acid complexed with nickel ion. The attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) analysis of the modified-gold electrode displays amide I and amide II bands characteristic of a primarily α-helix structure verifying the presence of (His)6-rHbI on the electrode surface. Also, X-ray photoelectron spectroscopy (XPS) results show a new peak after protein interaction corresponding to nitrogen and a calculated overlayer thickness of 5.3 nm. The functionality of the immobilized hemoprotein was established by direct current potential amperometry, using H2S as the analyte, validating its activity after immobilization. The current response to H2S concentrations was monitored over time giving a linear relationship from 30 to 700 nM with a corresponding sensitivity of 3.22 × 10-3 nA/nM. These results confirm that the analyzed gold nanostructured platform provides an efficient and strong link for polyhistidine-tag protein immobilization over gold and glassy carbon surfaces for a future biosensors development.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Proteínas Recombinantes
/
Hemoglobinas Anormales
/
Técnicas Biosensibles
/
Sulfuro de Hidrógeno
Límite:
Animals
Idioma:
En
Revista:
Sensors (Basel)
Año:
2018
Tipo del documento:
Article
País de afiliación:
Puerto Rico
Pais de publicación:
Suiza