Your browser doesn't support javascript.
loading
Soluble xyloglucan generates bigger bacterial community shifts than pectic polymers during in vitro fecal fermentation.
Moro Cantu-Jungles, Thaisa; do Nascimento, Geórgia Erdmman; Zhang, Xiaowei; Iacomini, Marcello; Cordeiro, Lucimara M C; Hamaker, Bruce R.
Afiliación
  • Moro Cantu-Jungles T; Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil; Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, USA.
  • do Nascimento GE; Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil.
  • Zhang X; Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, USA.
  • Iacomini M; Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil.
  • Cordeiro LMC; Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil. Electronic address: lucimaramcc@ufpr.br.
  • Hamaker BR; Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, USA. Electronic address: hmakerb@purdue.edu.
Carbohydr Polym ; 206: 389-395, 2019 Feb 15.
Article en En | MEDLINE | ID: mdl-30553337
ABSTRACT
Xyloglucans and pectic polymers can be obtained from a variety of plants ubiquitous in the human diet, however, their fermentability in the colon and consequent nutritional benefits are poorly understood. Here, we evaluated metabolite profiles and bacterial shifts during in vitro fecal fermentations of two isolated pectic polymers and a xyloglucan. Depending on their chemical structure, pectic polymers were more acetogenic or propiogenic. Xyloglucan fermentation also resulted in elevated propionate if compared to FOS. Bacteroides plebeius, B. uniformis, Parabacteroides distasonis and bacterial groups such as Blautia, Lachnospira, Clostridiales and Lachnospiraceae, presented distinct abundances on each dietary fiber ferment. PCA and heat map analysis showed that major microbiota shifts occurred during xyloglucan fermentation, but not pectin fermentation. These data suggest that uncommon carbohydrate structures (i.e. isolated, soluble xyloglucan) in the diet hold the potential to generate larger shifts in microbiota communities than commonly consumed fibers (i.e. pectins).
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Xilanos / Fibras de la Dieta / Pectinas / Heces / Fermentación / Microbioma Gastrointestinal / Glucanos Límite: Humans Idioma: En Revista: Carbohydr Polym Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Xilanos / Fibras de la Dieta / Pectinas / Heces / Fermentación / Microbioma Gastrointestinal / Glucanos Límite: Humans Idioma: En Revista: Carbohydr Polym Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos