Your browser doesn't support javascript.
loading
Solution NMR Spectroscopy with Isotope-Labeled Cysteine (13C and 15N) Reveals the Surface Structure of l-Cysteine-Coated Ultrasmall Gold Nanoparticles (1.8 nm).
Ruks, Tatjana; Beuck, Christine; Schaller, Torsten; Niemeyer, Felix; Zähres, Manfred; Loza, Kateryna; Heggen, Marc; Hagemann, Ulrich; Mayer, Christian; Bayer, Peter; Epple, Matthias.
Afiliación
  • Heggen M; Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons , Forschungszentrum Jülich GmbH , 52428 Jülich , Germany.
Langmuir ; 35(3): 767-778, 2019 01 22.
Article en En | MEDLINE | ID: mdl-30576151
ABSTRACT
Ultrasmall gold nanoparticles with a diameter of 1.8 nm were synthesized by reduction of tetrachloroauric acid with sodium borohydride in the presence of l-cysteine, with natural isotope abundance as well as 13C-labeled and 15N-labeled. The particle diameter was determined by high-resolution transmission electron microscopy and differential centrifugal sedimentation. X-ray photoelectron spectroscopy confirmed the presence of metallic gold with only a few percent of oxidized Au(+I) species. The surface structure and the coordination environment of the cysteine ligands on the ultrasmall gold nanoparticles were studied by a variety of homo- and heteronuclear NMR spectroscopic techniques including 1H-13C-heteronuclear single-quantum coherence and 13C-13C-INADEQUATE. Further information on the binding situation (including the absence of residual or detached l-cysteine in the solution) and on the nanoparticle diameter (indicating the well-dispersed state) was obtained by diffusion-ordered spectroscopy (1H-, 13C-, and 1H-13C-DOSY). Three coordination environments of l-cysteine on the gold surface were identified that were ascribed to different crystallographic sites, supported by geometric considerations of the nanoparticle ultrastructure. The particle size data and the NMR-spectroscopic analysis gave a particle composition of about Au174(cysteine)67.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Langmuir Asunto de la revista: QUIMICA Año: 2019 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Langmuir Asunto de la revista: QUIMICA Año: 2019 Tipo del documento: Article