Your browser doesn't support javascript.
loading
GARFIELD classifies disease-relevant genomic features through integration of functional annotations with association signals.
Iotchkova, Valentina; Ritchie, Graham R S; Geihs, Matthias; Morganella, Sandro; Min, Josine L; Walter, Klaudia; Timpson, Nicholas John; Dunham, Ian; Birney, Ewan; Soranzo, Nicole.
Afiliación
  • Iotchkova V; Human Genetics, Wellcome Sanger Institute, Hinxton, UK.
  • Ritchie GRS; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK.
  • Geihs M; Human Genetics, Wellcome Sanger Institute, Hinxton, UK.
  • Morganella S; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK.
  • Min JL; Human Genetics, Wellcome Sanger Institute, Hinxton, UK.
  • Walter K; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK.
  • Timpson NJ; MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
  • Dunham I; Human Genetics, Wellcome Sanger Institute, Hinxton, UK.
  • Birney E; MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
  • Soranzo N; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
Nat Genet ; 51(2): 343-353, 2019 02.
Article en En | MEDLINE | ID: mdl-30692680
Loci discovered by genome-wide association studies predominantly map outside protein-coding genes. The interpretation of the functional consequences of non-coding variants can be greatly enhanced by catalogs of regulatory genomic regions in cell lines and primary tissues. However, robust and readily applicable methods are still lacking by which to systematically evaluate the contribution of these regions to genetic variation implicated in diseases or quantitative traits. Here we propose a novel approach that leverages genome-wide association studies' findings with regulatory or functional annotations to classify features relevant to a phenotype of interest. Within our framework, we account for major sources of confounding not offered by current methods. We further assess enrichment of genome-wide association studies for 19 traits within Encyclopedia of DNA Elements- and Roadmap-derived regulatory regions. We characterize unique enrichment patterns for traits and annotations driving novel biological insights. The method is implemented in standalone software and an R package, to facilitate its application by the research community.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Enfermedad / Genoma Tipo de estudio: Risk_factors_studies Límite: Humans Idioma: En Revista: Nat Genet Asunto de la revista: GENETICA MEDICA Año: 2019 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Enfermedad / Genoma Tipo de estudio: Risk_factors_studies Límite: Humans Idioma: En Revista: Nat Genet Asunto de la revista: GENETICA MEDICA Año: 2019 Tipo del documento: Article Pais de publicación: Estados Unidos