Capturing chemical intuition in synthesis of metal-organic frameworks.
Nat Commun
; 10(1): 539, 2019 02 01.
Article
en En
| MEDLINE
| ID: mdl-30710082
We report a methodology using machine learning to capture chemical intuition from a set of (partially) failed attempts to synthesize a metal-organic framework. We define chemical intuition as the collection of unwritten guidelines used by synthetic chemists to find the right synthesis conditions. As (partially) failed experiments usually remain unreported, we have reconstructed a typical track of failed experiments in a successful search for finding the optimal synthesis conditions that yields HKUST-1 with the highest surface area reported to date. We illustrate the importance of quantifying this chemical intuition for the synthesis of novel materials.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Nat Commun
Asunto de la revista:
BIOLOGIA
/
CIENCIA
Año:
2019
Tipo del documento:
Article
País de afiliación:
Suiza
Pais de publicación:
Reino Unido