Your browser doesn't support javascript.
loading
Electro-Mechanical Conductance Modulation of a Nanopore Using a Removable Gate.
Zhao, Shidi; Restrepo-Pérez, Laura; Soskine, Misha; Maglia, Giovanni; Joo, Chirlmin; Dekker, Cees; Aksimentiev, Aleksei.
Afiliación
  • Zhao S; Center for Biophysics and Quantitative Biology, Department of Physics and Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.
  • Restrepo-Pérez L; Department of Bionanoscience, Kavli Institute of Nanoscience , Delft University of Technology , van der Maasweg 9 , 2629 HZ Delft , The Netherlands.
  • Soskine M; Groningen Biomolecular Sciences & Biotechnology Institute , University of Groningen , 9747 AG Groningen , The Netherlands.
  • Maglia G; Groningen Biomolecular Sciences & Biotechnology Institute , University of Groningen , 9747 AG Groningen , The Netherlands.
  • Joo C; Department of Bionanoscience, Kavli Institute of Nanoscience , Delft University of Technology , van der Maasweg 9 , 2629 HZ Delft , The Netherlands.
  • Dekker C; Department of Bionanoscience, Kavli Institute of Nanoscience , Delft University of Technology , van der Maasweg 9 , 2629 HZ Delft , The Netherlands.
  • Aksimentiev A; Center for Biophysics and Quantitative Biology, Department of Physics and Beckman Institute for Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.
ACS Nano ; 13(2): 2398-2409, 2019 02 26.
Article en En | MEDLINE | ID: mdl-30715850
Ion channels form the basis of information processing in living cells by facilitating the exchange of electrical signals across and along cellular membranes. Applying the same principles to man-made systems requires the development of synthetic ion channels that can alter their conductance in response to a variety of external manipulations. By combining single-molecule electrical recordings with all-atom molecular dynamics simulations, we here demonstrate a hybrid nanopore system that allows for both a stepwise change of its conductance and a nonlinear current-voltage dependence. The conductance modulation is realized by using a short flexible peptide gate that carries opposite electric charge at its ends. We show that a constant transmembrane bias can position (and, in a later stage, remove) the peptide gate right at the most-sensitive sensing region of a biological nanopore FraC, thus partially blocking its channel and producing a stepwise change in the conductance. Increasing or decreasing the bias while having the peptide gate trapped in the pore stretches or compresses the peptide within the nanopore, thus modulating its conductance in a nonlinear but reproducible manner. We envision a range of applications of this removable-gate nanopore system, e.g. from an element of biological computing circuits to a test bed for probing the elasticity of intrinsically disordered proteins.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Péptidos / Activación del Canal Iónico / Nanoporos Idioma: En Revista: ACS Nano Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Péptidos / Activación del Canal Iónico / Nanoporos Idioma: En Revista: ACS Nano Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos