Green's function for anisotropic dispersive poroelastic media based on the Radon transform and eigenvector diagonalization.
Proc Math Phys Eng Sci
; 475(2221): 20180610, 2019 Jan.
Article
en En
| MEDLINE
| ID: mdl-30760962
A compact Green's function for general dispersive anisotropic poroelastic media in a full-frequency regime is presented for the first time. First, starting in a frequency domain, the anisotropic dispersion is exactly incorporated into the constitutive relationship, thus avoiding fractional derivatives in a time domain. Then, based on the Radon transform, the original three-dimensional differential equation is effectively reduced to a one-dimensional system in space. Furthermore, inspired by the strategy adopted in the characteristic analysis of hyperbolic equations, the eigenvector diagonalization method is applied to decouple the one-dimensional vector problem into several independent scalar equations. Consequently, the fundamental solutions are easily obtained. A further derivation shows that Green's function can be decomposed into circumferential and spherical integrals, corresponding to static and transient responses, respectively. The procedures shown in this study are also compatible with other pertinent multi-physics coupling problems, such as piezoelectric, magneto-electro-elastic and thermo-elastic materials. Finally, the verifications and validations with existing analytical solutions and numerical solvers corroborate the correctness of the proposed Green's function.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Proc Math Phys Eng Sci
Año:
2019
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Reino Unido