Metabolic adaptation of adherent-invasive Escherichia coli to exposure to bile salts.
Sci Rep
; 9(1): 2175, 2019 02 18.
Article
en En
| MEDLINE
| ID: mdl-30778122
The adherent-invasive Escherichia coli (AIEC), which colonize the ileal mucosa of Crohn's disease patients, adhere to intestinal epithelial cells, invade them and exacerbate intestinal inflammation. The high nutrient competition between the commensal microbiota and AIEC pathobiont requires the latter to occupy their own metabolic niches to survive and proliferate within the gut. In this study, a global RNA sequencing of AIEC strain LF82 has been used to observe the impact of bile salts on the expression of metabolic genes. The results showed a global up-regulation of genes involved in degradation and a down-regulation of those implicated in biosynthesis. The main up-regulated degradation pathways were ethanolamine, 1,2-propanediol and citrate utilization, as well as the methyl-citrate pathway. Our study reveals that ethanolamine utilization bestows a competitive advantage of AIEC strains that are metabolically capable of its degradation in the presence of bile salts. We observed that bile salts activated secondary metabolism pathways that communicate to provide an energy benefit to AIEC. Bile salts may be used by AIEC as an environmental signal to promote their colonization.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Ácidos y Sales Biliares
/
Escherichia coli
Límite:
Animals
/
Humans
Idioma:
En
Revista:
Sci Rep
Año:
2019
Tipo del documento:
Article
País de afiliación:
Francia
Pais de publicación:
Reino Unido