Mouse dLGN Receives Functional Input from a Diverse Population of Retinal Ganglion Cells with Limited Convergence.
Neuron
; 102(2): 462-476.e8, 2019 04 17.
Article
en En
| MEDLINE
| ID: mdl-30799020
Mouse vision is based on the parallel output of more than 30 functional types of retinal ganglion cells (RGCs). Little is known about how representations of visual information change between retina and dorsolateral geniculate nucleus (dLGN) of the thalamus, the main relay between retina and cortex. Here, we functionally characterized responses of retrogradely labeled dLGN-projecting RGCs and dLGN neurons to the same set of visual stimuli. We found that many of the previously identified functional RGC types innervate dLGN, which maintained a high degree of functional diversity. Using a linear model to assess functional connectivity between RGC types and dLGN neurons, we found that responses of dLGN neurons could be predicted as linear combination of inputs from on average five RGC types, but only two of those had the strongest functional impact. Thus, mouse dLGN receives functional input from a diverse population of RGC types with limited convergence.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Células Ganglionares de la Retina
/
Visión Ocular
/
Vías Visuales
/
Cuerpos Geniculados
Tipo de estudio:
Prognostic_studies
Límite:
Animals
Idioma:
En
Revista:
Neuron
Asunto de la revista:
NEUROLOGIA
Año:
2019
Tipo del documento:
Article
Pais de publicación:
Estados Unidos