Your browser doesn't support javascript.
loading
Constraining the p-Mode-g-Mode Tidal Instability with GW170817.
Abbott, B P; Abbott, R; Abbott, T D; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agarwal, B; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allen, G; Allocca, A; Aloy, M A; Altin, P A; Amato, A; Ananyeva, A; Anderson, S B; Anderson, W G; Angelova, S V; Antier, S; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arène, M; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Atallah, D V; Aubin, F; Aufmuth, P; Aulbert, C; AultONeal, K; Austin, C; Avila-Alvarez, A; Babak, S.
Afiliación
  • Abbott BP; LIGO, California Institute of Technology, Pasadena, California 91125, USA.
  • Abbott R; LIGO, California Institute of Technology, Pasadena, California 91125, USA.
  • Abbott TD; Louisiana State University, Baton Rouge, Louisiana 70803, USA.
  • Acernese F; Università di Salerno, Fisciano, I-84084 Salerno, Italy.
  • Ackley K; INFN, Sezione di Napoli, Complesso Universitario di Monte S.Angelo, I-80126 Napoli, Italy.
  • Adams C; OzGrav, School of Physics & Astronomy, Monash University, Clayton 3800, Victoria, Australia.
  • Adams T; LIGO Livingston Observatory, Livingston, Louisiana 70754, USA.
  • Addesso P; Laboratoire d'Annecy de Physique des Particules (LAPP), University Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, F-74941 Annecy, France.
  • Adhikari RX; University of Sannio at Benevento, I-82100 Benevento, Italy and INFN, Sezione di Napoli, I-80100 Napoli, Italy.
  • Adya VB; LIGO, California Institute of Technology, Pasadena, California 91125, USA.
  • Affeldt C; Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany.
  • Agarwal B; Leibniz Universität Hannover, D-30167 Hannover, Germany.
  • Agathos M; Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany.
  • Agatsuma K; Leibniz Universität Hannover, D-30167 Hannover, Germany.
  • Aggarwal N; NCSA, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
  • Aguiar OD; University of Cambridge, Cambridge CB2 1TN, United Kingdom.
  • Aiello L; Nikhef, Science Park 105, 1098 XG Amsterdam, Netherlands.
  • Ain A; LIGO, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
  • Ajith P; Instituto Nacional de Pesquisas Espaciais, 12227-010 São José dos Campos, São Paulo, Brazil.
  • Allen B; Gran Sasso Science Institute (GSSI), I-67100 L'Aquila, Italy.
  • Allen G; INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi, Italy.
  • Allocca A; Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India.
  • Aloy MA; International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India.
  • Altin PA; Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-30167 Hannover, Germany.
  • Amato A; Leibniz Universität Hannover, D-30167 Hannover, Germany.
  • Ananyeva A; University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA.
  • Anderson SB; NCSA, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
  • Anderson WG; Università di Pisa, I-56127 Pisa, Italy.
  • Angelova SV; INFN, Sezione di Pisa, I-56127 Pisa, Italy.
  • Antier S; Departamento de Astronomía y Astrofísica, Universitat de València, E-46100 Burjassot, València, Spain.
  • Appert S; OzGrav, Australian National University, Canberra, Australian Capital Territory 0200, Australia.
  • Arai K; Laboratoire des Matériaux Avancés (LMA), CNRS/IN2P3, F-69622 Villeurbanne, France.
  • Araya MC; LIGO, California Institute of Technology, Pasadena, California 91125, USA.
  • Areeda JS; LIGO, California Institute of Technology, Pasadena, California 91125, USA.
  • Arène M; University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA.
  • Arnaud N; SUPA, University of Strathclyde, Glasgow G1 1XQ, United Kingdom.
  • Arun KG; LAL, University Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, F-91898 Orsay, France.
  • Ascenzi S; LIGO, California Institute of Technology, Pasadena, California 91125, USA.
  • Ashton G; LIGO, California Institute of Technology, Pasadena, California 91125, USA.
  • Ast M; LIGO, California Institute of Technology, Pasadena, California 91125, USA.
  • Aston SM; California State University Fullerton, Fullerton, California 92831, USA.
  • Astone P; APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, F-75205 Paris Cedex 13, France.
  • Atallah DV; LAL, University Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, F-91898 Orsay, France.
  • Aubin F; European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy.
  • Aufmuth P; Chennai Mathematical Institute, Chennai 603103, India.
  • Aulbert C; Università di Roma Tor Vergata, I-00133 Roma, Italy.
  • AultONeal K; INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy.
  • Austin C; OzGrav, School of Physics & Astronomy, Monash University, Clayton 3800, Victoria, Australia.
  • Avila-Alvarez A; Universität Hamburg, D-22761 Hamburg, Germany.
  • Babak S; LIGO Livingston Observatory, Livingston, Louisiana 70754, USA.
Phys Rev Lett ; 122(6): 061104, 2019 Feb 15.
Article en En | MEDLINE | ID: mdl-30822067
ABSTRACT
We analyze the impact of a proposed tidal instability coupling p modes and g modes within neutron stars on GW170817. This nonresonant instability transfers energy from the orbit of the binary to internal modes of the stars, accelerating the gravitational-wave driven inspiral. We model the impact of this instability on the phasing of the gravitational wave signal using three parameters per star an overall amplitude, a saturation frequency, and a spectral index. Incorporating these additional parameters, we compute the Bayes factor (lnB_{!pg}^{pg}) comparing our p-g model to a standard one. We find that the observed signal is consistent with waveform models that neglect p-g effects, with lnB_{!pg}^{pg}=0.03_{-0.58}^{+0.70} (maximum a posteriori and 90% credible region). By injecting simulated signals that do not include p-g effects and recovering them with the p-g model, we show that there is a ≃50% probability of obtaining similar lnB_{!pg}^{pg} even when p-g effects are absent. We find that the p-g amplitude for 1.4 M_{⊙} neutron stars is constrained to less than a few tenths of the theoretical maximum, with maxima a posteriori near one-tenth this maximum and p-g saturation frequency ∼70 Hz. This suggests that there are less than a few hundred excited modes, assuming they all saturate by wave breaking. For comparison, theoretical upper bounds suggest ≲10^{3} modes saturate by wave breaking. Thus, the measured constraints only rule out extreme values of the p-g parameters. They also imply that the instability dissipates ≲10^{51} erg over the entire inspiral, i.e., less than a few percent of the energy radiated as gravitational waves.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Phys Rev Lett Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Phys Rev Lett Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos
...