Your browser doesn't support javascript.
loading
Stronger together: Multi-genome transmission of measles virus.
Cattaneo, Roberto; Donohue, Ryan C; Generous, Alex R; Navaratnarajah, Chanakha K; Pfaller, Christian K.
Afiliación
  • Cattaneo R; Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, United States; Mayo Graduate School, Mayo Clinic, Rochester, MN, 55905, United States. Electronic address: Cattaneo.Roberto@mayo.edu.
  • Donohue RC; Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, United States; Mayo Graduate School, Mayo Clinic, Rochester, MN, 55905, United States.
  • Generous AR; Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, United States; Mayo Graduate School, Mayo Clinic, Rochester, MN, 55905, United States.
  • Navaratnarajah CK; Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, United States; Mayo Graduate School, Mayo Clinic, Rochester, MN, 55905, United States.
  • Pfaller CK; Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, United States; Paul-Ehrlich-Institute, Division of Veterinary Medicine, Langen, 63225, Germany.
Virus Res ; 265: 74-79, 2019 05.
Article en En | MEDLINE | ID: mdl-30853585
Measles virus (MeV) is an immunosuppressive, extremely contagious RNA virus that remains a leading cause of death among children. MeV is dual-tropic: it replicates first in lymphatic tissue, causing immunosuppression, and then in epithelial cells of the upper airways, accounting for extremely efficient contagion. Efficient contagion is counter-intuitive because the enveloped MeV particles are large and relatively unstable. However, MeV particles can contain multiple genomes, which can code for proteins with different functional characteristics. These proteins can cooperate to promote virus spread in tissue culture, prompting the question of whether multi-genome MeV transmission may promote efficient MeV spread also in vivo. Consistent with this hypothesis, in well-differentiated primary human airway epithelia large genome populations spread rapidly through intercellular pores. In another line of research, it was shown that distinct lymphocytic-adapted and epithelial-adapted genome populations exist; cyclical adaptation studies indicate that suboptimal variants in one environment may constitute a low frequency reservoir for adaptation to the other environment. Altogether, these observations suggest that, in humans, MeV spread relies on en bloc genome transmission, and that genomic diversity is instrumental for rapid MeV dissemination within hosts.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Genoma Viral / Mucosa Respiratoria / Células Epiteliales / Sarampión / Virus del Sarampión Límite: Humans Idioma: En Revista: Virus Res Asunto de la revista: VIROLOGIA Año: 2019 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Genoma Viral / Mucosa Respiratoria / Células Epiteliales / Sarampión / Virus del Sarampión Límite: Humans Idioma: En Revista: Virus Res Asunto de la revista: VIROLOGIA Año: 2019 Tipo del documento: Article Pais de publicación: Países Bajos