Your browser doesn't support javascript.
loading
Neural mechanisms of vibrotactile categorization.
Malone, Patrick S; Eberhardt, Silvio P; Wimmer, Klaus; Sprouse, Courtney; Klein, Richard; Glomb, Katharina; Scholl, Clara A; Bokeria, Levan; Cho, Philip; Deco, Gustavo; Jiang, Xiong; Bernstein, Lynne E; Riesenhuber, Maximilian.
Afiliación
  • Malone PS; Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia.
  • Eberhardt SP; Department of Speech, Language, and Hearing Sciences, George Washington University, Washington, District of Columbia.
  • Wimmer K; Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.
  • Sprouse C; Centre de Recerca Matemàtica, Barcelona, Spain.
  • Klein R; Barcelona Graduate School of Mathematics, Barcelona, Spain.
  • Glomb K; Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia.
  • Scholl CA; Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia.
  • Bokeria L; Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.
  • Cho P; Department of Radiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
  • Deco G; Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia.
  • Jiang X; Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia.
  • Bernstein LE; Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia.
  • Riesenhuber M; Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.
Hum Brain Mapp ; 40(10): 3078-3090, 2019 07.
Article en En | MEDLINE | ID: mdl-30920706
ABSTRACT
The grouping of sensory stimuli into categories is fundamental to cognition. Previous research in the visual and auditory systems supports a two-stage processing hierarchy that underlies perceptual categorization (a) a "bottom-up" perceptual stage in sensory cortices where neurons show selectivity for stimulus features and (b) a "top-down" second stage in higher level cortical areas that categorizes the stimulus-selective input from the first stage. In order to test the hypothesis that the two-stage model applies to the somatosensory system, 14 human participants were trained to categorize vibrotactile stimuli presented to their right forearm. Then, during an fMRI scan, participants actively categorized the stimuli. Representational similarity analysis revealed stimulus selectivity in areas including the left precentral and postcentral gyri, the supramarginal gyrus, and the posterior middle temporal gyrus. Crucially, we identified a single category-selective region in the left ventral precentral gyrus. Furthermore, an estimation of directed functional connectivity delivered evidence for robust top-down connectivity from the second to first stage. These results support the validity of the two-stage model of perceptual categorization for the somatosensory system, suggesting common computational principles and a unified theory of perceptual categorization across the visual, auditory, and somatosensory systems.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Encéfalo / Percepción del Tacto / Modelos Neurológicos / Vías Nerviosas Límite: Adolescent / Adult / Female / Humans / Male Idioma: En Revista: Hum Brain Mapp Asunto de la revista: CEREBRO Año: 2019 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Encéfalo / Percepción del Tacto / Modelos Neurológicos / Vías Nerviosas Límite: Adolescent / Adult / Female / Humans / Male Idioma: En Revista: Hum Brain Mapp Asunto de la revista: CEREBRO Año: 2019 Tipo del documento: Article