Your browser doesn't support javascript.
loading
Quantifying the informational value of classification images.
Brinkman, Loek; Goffin, Stanny; van de Schoot, Rens; van Haren, Neeltje E M; Dotsch, Ron; Aarts, Henk.
Afiliación
  • Brinkman L; Department of Psychology, Utrecht University, Utrecht, The Netherlands. l.brinkman@uu.nl.
  • Goffin S; Maastricht University, Maastricht, The Netherlands.
  • van de Schoot R; Department of Methods and Statistics, Utrecht University, Utrecht, The Netherlands.
  • van Haren NEM; Optentia Research Program, Faculty of Humanities, North-West University, Potchefstroom, South Africa.
  • Dotsch R; UMC Utrecht, Brain Centre Rudolf Magnus, Department of Psychiatry, Utrecht University, Utrecht, The Netherlands.
  • Aarts H; Department of Psychiatry, University Medical Center Utrecht, Utrecht & department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Centre, Rotterdam, The Netherlands.
Behav Res Methods ; 51(5): 2059-2073, 2019 10.
Article en En | MEDLINE | ID: mdl-30937848
Reverse correlation is an influential psychophysical paradigm that uses a participant's responses to randomly varying images to build a classification image (CI), which is commonly interpreted as a visualization of the participant's mental representation. It is unclear, however, how to statistically quantify the amount of signal present in CIs, which limits the interpretability of these images. In this article, we propose a novel metric, infoVal, which assesses informational value relative to a resampled random distribution and can be interpreted like a z score. In the first part, we define the infoVal metric and show, through simulations, that it adheres to typical Type I error rates under various task conditions (internal validity). In the second part, we show that the metric correlates with markers of data quality in empirical reverse-correlation data, such as the subjective recognizability, objective discriminability, and test-retest reliability of the CIs (convergent validity). In the final part, we demonstrate how the infoVal metric can be used to compare the informational value of reverse-correlation datasets, by comparing data acquired online with data acquired in a controlled lab environment. We recommend a new standard of good practice in which researchers assess the infoVal scores of reverse-correlation data in order to ensure that they do not read signal in CIs where no signal is present. The infoVal metric is implemented in the open-source rcicr R package, to facilitate its adoption.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Simulación por Computador Tipo de estudio: Prognostic_studies Límite: Adult / Female / Humans / Male Idioma: En Revista: Behav Res Methods Asunto de la revista: CIENCIAS DO COMPORTAMENTO Año: 2019 Tipo del documento: Article País de afiliación: Países Bajos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Simulación por Computador Tipo de estudio: Prognostic_studies Límite: Adult / Female / Humans / Male Idioma: En Revista: Behav Res Methods Asunto de la revista: CIENCIAS DO COMPORTAMENTO Año: 2019 Tipo del documento: Article País de afiliación: Países Bajos Pais de publicación: Estados Unidos