Your browser doesn't support javascript.
loading
Deposition of Host Matrix Proteins on Breast Implant Surfaces Facilitates Staphylococcus Epidermidis Biofilm Formation: In Vitro Analysis.
Walker, Jennifer N; Pinkner, Chloe L; Lynch, Aaron J L; Ortbal, Sarah; Pinkner, Jerome S; Hultgren, Scott J; Myckatyn, Terence M.
Afiliación
  • Walker JN; Washington University School of Medicine, St. Louis, MO.
  • Pinkner CL; Washington University School of Medicine, St. Louis, MO.
  • Lynch AJL; Washington University School of Medicine, St. Louis, MO.
  • Ortbal S; Washington University School of Medicine, St. Louis, MO.
  • Pinkner JS; Washington University School of Medicine, St. Louis, MO.
  • Hultgren SJ; Washington University School of Medicine, St. Louis, MO.
  • Myckatyn TM; Washington University School of Medicine, St. Louis, MO.
Aesthet Surg J ; 40(3): 281-295, 2020 02 17.
Article en En | MEDLINE | ID: mdl-30953053
ABSTRACT

BACKGROUND:

Staphylococcus epidermidis is a primary cause of breast implant-associated infection. S epidermidis possesses several virulence factors that enable it to bind both abiotic surfaces and host factors to form a biofilm. In addition S epidermidis colocalizes with matrix proteins coating explanted human breast implants.

OBJECTIVES:

The authors sought to identify matrix proteins that S epidermidis may exploit to infect various breast implant surfaces in vitro.

METHODS:

A combination of in vitro assays was used to characterize S epidermidis strains isolated from human breast implants to gain a better understanding of how these bacteria colonize breast implant surfaces. These included determining the (1) minimum inhibitory and bactericidal concentrations for irrigation solutions commonly used to prevent breast implant contamination; (2) expression and carriage of polysaccharide intercellular adhesin and serine-aspartate repeat proteins, which bind fibrinogen (SdrG) and collagen (SdrF), respectively; and (3) biofilm formation on varying implant surface characteristics, in different growth media, and supplemented with fibrinogen and Types I and III collagen. Scanning electron microscopy and immunofluorescence staining analyses were performed to corroborate findings from these assays.

RESULTS:

Textured breast implant surfaces support greater bacterial biofilm formation at baseline, and the addition of collagen significantly increases biomass on all surfaces tested. We found that S epidermidis isolated from breast implants all encoded SdrF. Consistent with this finding, these strains had a clear affinity for Type I collagen, forming dense, highly structured biofilms in its presence.

CONCLUSIONS:

The authors found that S epidermidis may utilize SdrF to interact with Type I collagen to form biofilm on breast implant surfaces.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Implantes de Mama / Implantación de Mama Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Aesthet Surg J Año: 2020 Tipo del documento: Article País de afiliación: Macao

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Implantes de Mama / Implantación de Mama Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Aesthet Surg J Año: 2020 Tipo del documento: Article País de afiliación: Macao
...