Your browser doesn't support javascript.
loading
Two Experimental Protocols for Accurate Measurement of Gas Component Uptake and Production Rates in Bioconversion Processes.
Stone, Kyle A; He, Q Peter; Wang, Jin.
Afiliación
  • Stone KA; Department of Chemical Engineering, Auburn University, Auburn, AL, USA, 36849.
  • He QP; Department of Chemical Engineering, Auburn University, Auburn, AL, USA, 36849. qhe@auburn.edu.
  • Wang J; Department of Chemical Engineering, Auburn University, Auburn, AL, USA, 36849. wang@auburn.edu.
Sci Rep ; 9(1): 5899, 2019 04 11.
Article en En | MEDLINE | ID: mdl-30976062
ABSTRACT
Bioconversion processes offer many economic, environmental, and societal advantages for production of fuels and chemicals. Successful commercialization of any biotechnology usually requires accurate characterization of cell growth dynamics, substrate conversion and production excretion rates. Despite recent advancements in analytical equipment, obtaining accurate measurement of gas component uptake or production rates remains challenging due to their high sensitivity to system pressure or volume changes. Specifically, the consumption and production of various gases will result in changes in system pressure (for batch operations) or off-gas flow rate (for continuous operations). These changes would cause significant errors in the estimated gas component uptake and production rates if they were not accounted for. In this work, we propose two easy-to-implement experimental protocols and associated calculation procedures to obtain accurate measurements of gas component consumption and production rates; one is for batch operation and one is for continuous operation. For depressurized (i.e., system pressure below 1 atm) batch cultures, nitrogen (or other inert gases) is used to repressurize the system to 1 atm before taking sample; while for continuous cultures, He (or other inert gases) is used as an internal tracer to accurately measure off-gas flow rate. The effectiveness and accuracy of the two protocols and associated calculation procedures are demonstrated using several case studies with both abiotic and biotic systems.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2019 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2019 Tipo del documento: Article