Your browser doesn't support javascript.
loading
Engineering microenvironment for human cardiac tissue assembly in heart-on-a-chip platform.
Zhao, Yimu; Rafatian, Naimeh; Wang, Erika Y; Feric, Nicole T; Lai, Benjamin F L; Knee-Walden, Ericka J; Backx, Peter H; Radisic, Milica.
Afiliación
  • Zhao Y; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5; Canada.
  • Rafatian N; Division of Cardiology and Peter Munk Cardiac Center, University of Health Network, Toronto, Ontario M5G 2N2, Canada.
  • Wang EY; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada.
  • Feric NT; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; TARA Biosystems, Inc., New York, NY 10016, USA.
  • Lai BFL; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada.
  • Knee-Walden EJ; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada.
  • Backx PH; Division of Cardiology and Peter Munk Cardiac Center, University of Health Network, Toronto, Ontario M5G 2N2, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada; Toro
  • Radisic M; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5; Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Toronto General Research Institute, Toronto, Ontario M5G 2C4; Canada. Elec
Matrix Biol ; 85-86: 189-204, 2020 01.
Article en En | MEDLINE | ID: mdl-30981898
Organ-on-a-chip systems have the potential to revolutionize drug screening and disease modeling through the use of human stem cell-derived cardiomyocytes. The predictive power of these tissue models critically depends on the functional assembly and maturation of human cells that are used as building blocks for organ-on-a-chip systems. To resemble a more adult-like phenotype on these heart-on-a-chip systems, the surrounding micro-environment of individual cardiomyocyte needs to be controlled. Herein, we investigated the impact of four microenvironmental cues: cell seeding density, types and percentages of non-myocyte populations, the types of hydrogels used for tissue inoculation and the electrical conditioning regimes on the structural and functional assembly of human pluripotent stem cell-derived cardiac tissues. Utilizing a novel, plastic and open-access heart-on-a-chip system that is capable of continuous non-invasive monitoring of tissue contractions, we were able to study how different micro-environmental cues affect the assembly of the cardiomyocytes into a functional cardiac tissue. We have defined conditions that resulted in tissues exhibiting hallmarks of the mature human myocardium, such as positive force-frequency relationship and post-rest potentiation.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Técnicas de Cultivo de Órganos / Células Madre Embrionarias / Células Madre Pluripotentes Inducidas / Miocardio Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Matrix Biol Asunto de la revista: BIOLOGIA MOLECULAR / BIOQUIMICA Año: 2020 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Técnicas de Cultivo de Órganos / Células Madre Embrionarias / Células Madre Pluripotentes Inducidas / Miocardio Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Matrix Biol Asunto de la revista: BIOLOGIA MOLECULAR / BIOQUIMICA Año: 2020 Tipo del documento: Article Pais de publicación: Países Bajos