Your browser doesn't support javascript.
loading
Organic transistor platform with integrated microfluidics for in-line multi-parametric in vitro cell monitoring.
Curto, Vincenzo F; Marchiori, Bastien; Hama, Adel; Pappa, Anna-Maria; Ferro, Magali P; Braendlein, Marcel; Rivnay, Jonathan; Fiocchi, Michel; Malliaras, George G; Ramuz, Marc; Owens, Róisín M.
Afiliación
  • Curto VF; Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 880 Avenue de Mimet, Gardanne 13541, France.
  • Marchiori B; Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 880 Avenue de Mimet, Gardanne 13541, France.
  • Hama A; Flexible Electronics Department, Ecole Nationale Supérieure des Mines CMP-EMSE, MOC, 880 Avenue de Mimet, Gardanne 13541, France.
  • Pappa AM; Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 880 Avenue de Mimet, Gardanne 13541, France.
  • Ferro MP; Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 880 Avenue de Mimet, Gardanne 13541, France.
  • Braendlein M; Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 880 Avenue de Mimet, Gardanne 13541, France.
  • Rivnay J; Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 880 Avenue de Mimet, Gardanne 13541, France.
  • Fiocchi M; Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 880 Avenue de Mimet, Gardanne 13541, France.
  • Malliaras GG; Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 880 Avenue de Mimet, Gardanne 13541, France.
  • Ramuz M; Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 880 Avenue de Mimet, Gardanne 13541, France.
  • Owens RM; Flexible Electronics Department, Ecole Nationale Supérieure des Mines CMP-EMSE, MOC, 880 Avenue de Mimet, Gardanne 13541, France.
Microsyst Nanoeng ; 3: 17028, 2017.
Article en En | MEDLINE | ID: mdl-31057869
ABSTRACT
Future drug discovery and toxicology testing could benefit significantly from more predictive and multi-parametric readouts from in vitro models. Despite the recent advances in the field of microfluidics, and more recently organ-on-a-chip technology, there is still a high demand for real-time monitoring systems that can be readily embedded with microfluidics. In addition, multi-parametric monitoring is essential to improve the predictive quality of the data used to inform clinical studies that follow. Here we present a microfluidic platform integrated with in-line electronic sensors based on the organic electrochemical transistor. Our goals are two-fold, first to generate a platform to host cells in a more physiologically relevant environment (using physiologically relevant fluid shear stress (FSS)) and second to show efficient integration of multiple different methods for assessing cell morphology, differentiation, and integrity. These include optical imaging, impedance monitoring, metabolite sensing, and a wound-healing assay. We illustrate the versatility of this multi-parametric monitoring in giving us increased confidence to validate the improved differentiation of cells toward a physiological profile under FSS, thus yielding more accurate data when used to assess the effect of drugs or toxins. Overall, this platform will enable high-content screening for in vitro drug discovery and toxicology testing and bridges the existing gap in the integration of in-line sensors in microfluidic devices.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Microsyst Nanoeng Año: 2017 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Microsyst Nanoeng Año: 2017 Tipo del documento: Article País de afiliación: Francia