Elevating H3K27me3 level sensitizes colorectal cancer to oxaliplatin.
J Mol Cell Biol
; 12(2): 125-137, 2020 02 20.
Article
en En
| MEDLINE
| ID: mdl-31065671
Histone methylation is a context-dependent modification that regulates gene expression, and the trimethylation of histone H3 lysine 27 (H3K27me3) usually induces gene silencing. Overcoming colorectal cancer (CRC) chemoresistance is currently a huge challenge, but the relationship between H3K27me3 modification and chemoresistance remains largely unclear. Here, we found that H3K27me3 levels positively correlated with the metastasis-free survival of CRC patients and a low H3K27me3 level predicted a poor outcome upon chemotherapeutic drug treatment. Oxaliplatin stimulation significantly induced the expression of H3K27 lysine demethylase 6A/6B (KDM6A/6B), thus decreasing the level of H3K27me3 in CRC cells. Elevation of H3K27me3 level through KDM6A/6B depletion or GSK-J4 (a KDM6A/6B inhibitor) treatment significantly enhanced oxaliplatin-induced apoptosis. Conversely, when inhibiting the expression of H3K27me3 by EPZ-6438, an inhibitor of the histone methyltransferase EZH2, the proportion of apoptotic cells remarkably decreased. In addition, the combination of GSK-J4 and oxaliplatin significantly inhibited tumor growth in an oxaliplatin-resistant patient-derived xenograft model. Importantly, we revealed that oxaliplatin treatment dramatically induced NOTCH2 expression, which was caused by downregulation of H3K27me3 level on the NOTCH2 transcription initiation site. Thus, the activated NOTCH signaling promoted the expression of stemness-related genes, which resulted in oxaliplatin resistance. Furthermore, oxaliplatin-induced NOTCH signaling could be interrupted by GSK-J4 treatment. Collectively, our findings suggest that elevating H3K27me3 level can improve drug sensitivity in CRC patients.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Histonas
/
Neoplasias Colorrectales
/
Regulación hacia Arriba
/
Resistencia a Antineoplásicos
/
Oxaliplatino
/
Antineoplásicos
Tipo de estudio:
Prognostic_studies
Límite:
Aged80
Idioma:
En
Revista:
J Mol Cell Biol
Asunto de la revista:
BIOLOGIA MOLECULAR
Año:
2020
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Estados Unidos