Your browser doesn't support javascript.
loading
pH-Induced Misfolding Mechanism of Prion Protein: Insights from Microsecond-Accelerated Molecular Dynamics Simulations.
Zhou, Shuangyan; Shi, Danfeng; Liu, Xuewei; Yao, Xiaojun; Da, Lin-Tai; Liu, Huanxiang.
Afiliación
  • Zhou S; School of Pharmacy , Lanzhou University , Lanzhou 730000 , China.
  • Shi D; Chongqing Key Laboratory on Big Data for Bio Intelligence , Chongqing University of Posts and Telecommunications , Chongqing 400065 , China.
  • Liu X; State Key Laboratory of Applied Organic Chemistry and Department of Chemistry , Lanzhou University , Lanzhou 730000 , China.
  • Yao X; State Key Laboratory of Applied Organic Chemistry and Department of Chemistry , Lanzhou University , Lanzhou 730000 , China.
  • Da LT; State Key Laboratory of Applied Organic Chemistry and Department of Chemistry , Lanzhou University , Lanzhou 730000 , China.
  • Liu H; State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health , Macau University of Science and Technology , Taipa, Macau , China.
ACS Chem Neurosci ; 10(6): 2718-2729, 2019 06 19.
Article en En | MEDLINE | ID: mdl-31070897
ABSTRACT
The conformational transition of prion protein (PrP) from a native form PrPC to a pathological isoform PrPSc is the main cause of a number of prion diseases in human and animals. Thus, understanding the molecular basis of conformational transition of PrP will be valuable for unveiling the etiology of PrP-related diseases. Here, to explore the potential misfolding mechanism of PrP under the acidic condition, which is known to promote PrP misfolding and trigger its aggregation, the conventional and accelerated molecular dynamics (MD) simulations combined with the Markov state model (MSM) analysis were performed. The conventional MD simulations reveal that, at an acidic pH, the globular domain of PrP is partially unfolded, particularly for the α2 C-terminus. Structural analysis of the key macrostates obtained by MSM indicates that the α2 C-terminus and the ß2-α2 loop may serve as important sites for the pH-induced PrP misfolding. Meanwhile, the α1 may also participate in the pH-induced structural conversion by moving away from the α2-α3 subdomain. Notably, dynamical network analysis of the key metastable states indicates that the protonated H187 weakens the interactions between the α2 C-terminus, α1-ß2 loop, and α2-α3 loop, leading these domains, especially the α2 C-terminus, to become unstable and to begin to misfold. Therefore, the α2 C-terminus plays a key role in the PrP misfolding process and serves as a potential site for drug targeting. Overall, our findings can deepen the understanding of the pathogenesis related to PrP and provide useful guidance for the future drug discovery.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Pliegue de Proteína / Proteínas PrPSc / Proteínas PrPC / Simulación de Dinámica Molecular Tipo de estudio: Health_economic_evaluation / Prognostic_studies Límite: Humans Idioma: En Revista: ACS Chem Neurosci Año: 2019 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Pliegue de Proteína / Proteínas PrPSc / Proteínas PrPC / Simulación de Dinámica Molecular Tipo de estudio: Health_economic_evaluation / Prognostic_studies Límite: Humans Idioma: En Revista: ACS Chem Neurosci Año: 2019 Tipo del documento: Article País de afiliación: China