Your browser doesn't support javascript.
loading
Nano- and Micropatterned Polycaprolactone Cellulose Composite Surfaces with Tunable Protein Adsorption, Fibrin Clot Formation, and Endothelial Cellular Response.
Mohan, Tamilselvan; Nagaraj, Chandran; Nagy, Bence M; Bracic, Matej; Maver, Uros; Olschewski, Andrea; Stana Kleinschek, Karin; Kargl, Rupert.
Afiliación
  • Mohan T; Laboratory for Characterisation and Processing of Polymers, Faculty of Mechanical Engineering , University of Maribor , Smetanova ulica17 , 2000 Maribor , Slovenia.
  • Nagaraj C; Ludwig Boltzmann Institute for Lung Vascular Research , Stiftingtalstrasse 24 , 8010 Graz , Austria.
  • Nagy BM; Ludwig Boltzmann Institute for Lung Vascular Research , Stiftingtalstrasse 24 , 8010 Graz , Austria.
  • Bracic M; Laboratory for Characterisation and Processing of Polymers, Faculty of Mechanical Engineering , University of Maribor , Smetanova ulica17 , 2000 Maribor , Slovenia.
  • Maver U; Faculty of Medicine, Institute of Biomedical Sciences , University of Maribor , Taborska Ulica 8 , SI-2000 Maribor , Slovenia.
  • Olschewski A; Ludwig Boltzmann Institute for Lung Vascular Research , Stiftingtalstrasse 24 , 8010 Graz , Austria.
  • Stana Kleinschek K; Chair of Physiology , Otto Loewi Research Center , Neue Stiftingtalstraße 6/D05 , 8010 Graz , Austria.
  • Kargl R; Laboratory for Characterisation and Processing of Polymers, Faculty of Mechanical Engineering , University of Maribor , Smetanova ulica17 , 2000 Maribor , Slovenia.
Biomacromolecules ; 20(6): 2327-2337, 2019 06 10.
Article en En | MEDLINE | ID: mdl-31070898
This work describes the interaction of the human blood plasma proteins albumin, fibrinogen, and γ-globulins with micro- and nanopatterned polymer interfaces. Protein adsorption studies were correlated with the fibrin clotting time of human blood plasma and with the growth of primary human pulmonary artery endothelial cells (hECs) on these patterns. It was observed that blends of polycaprolactone (PCL) and trimethylsilyl-protected cellulose form various thin-film patterns during spin coating, depending on the mass ratio of the polymers in the spinning solutions. Vapor-phase acid-catalyzed deprotection preserves these patterns but yields interfaces that are composed of hydrophilic cellulose domains enclosed by hydrophobic PCL. The blood plasma proteins are repelled by the cellulose domains, allowing for a suggested selective protein deposition on the PCL domains. An inverse proportional correlation is observed between the amount of cellulose present in the films and the mass of irreversibly adsorbed proteins. This results in significantly increased fibrin clotting times and lower masses of deposited clots on cellulose-containing films as revealed by quartz crystal microbalance with dissipation measurements. Cell viability of hECs grown on these surfaces was directly correlated with higher protein adsorption and faster clot formation. The results show that presented patterned polymer composite surfaces allow for a controllable blood plasma protein coagulation and a significant biological response from hECs. It is proposed that this knowledge can be utilized in regenerative medicine, cell cultures, and artificial vascular grafts by a careful choice of polymers and patterns.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Poliésteres / Coagulación Sanguínea / Fibrina / Celulosa / Células Endoteliales Límite: Humans Idioma: En Revista: Biomacromolecules Asunto de la revista: BIOLOGIA MOLECULAR Año: 2019 Tipo del documento: Article País de afiliación: Eslovenia Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Poliésteres / Coagulación Sanguínea / Fibrina / Celulosa / Células Endoteliales Límite: Humans Idioma: En Revista: Biomacromolecules Asunto de la revista: BIOLOGIA MOLECULAR Año: 2019 Tipo del documento: Article País de afiliación: Eslovenia Pais de publicación: Estados Unidos