Your browser doesn't support javascript.
loading
Analytical Py-GC/MS of Genetically Modified Poplar for the Increased Production of Bio-aromatics.
SriBala, Gorugantu; Toraman, Hilal Ezgi; Symoens, Steffen; Déjardin, Annabelle; Pilate, Gilles; Boerjan, Wout; Ronsse, Frederik; Van Geem, Kevin M; Marin, Guy B.
Afiliación
  • SriBala G; Ghent University, Laboratory for Chemical Technology, Technologiepark 125, 9052 Ghent, Belgium.
  • Toraman HE; Ghent University, Laboratory for Chemical Technology, Technologiepark 125, 9052 Ghent, Belgium.
  • Symoens S; Ghent University, Laboratory for Chemical Technology, Technologiepark 125, 9052 Ghent, Belgium.
  • Déjardin A; Institut National de la Recherche Agronomique (INRA), Unité de Recherche 0588, Amélioration, Génétique et Physiologie Forestières, 45075 Orléans, France.
  • Pilate G; Institut National de la Recherche Agronomique (INRA), Unité de Recherche 0588, Amélioration, Génétique et Physiologie Forestières, 45075 Orléans, France.
  • Boerjan W; Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium.
  • Ronsse F; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium.
  • Van Geem KM; Ghent University, Department of Biosystems Engineering, Coupure Links 653, 9000 Ghent, Belgium.
  • Marin GB; Ghent University, Laboratory for Chemical Technology, Technologiepark 125, 9052 Ghent, Belgium.
Comput Struct Biotechnol J ; 17: 599-610, 2019.
Article en En | MEDLINE | ID: mdl-31080566
ABSTRACT
Genetic engineering is a powerful tool to steer bio-oil composition towards the production of speciality chemicals such as guaiacols, syringols, phenols, and vanillin through well-defined biomass feedstocks. Our previous work demonstrated the effects of lignin biosynthesis gene modification on the pyrolysis vapour compositions obtained from wood derived from greenhouse-grown poplars. In this study, field-grown poplars downregulated in the genes encoding CINNAMYL ALCOHOL DEHYDROGENASE (CAD), CAFFEIC ACID O-METHYLTRANSFERASE (COMT) and CAFFEOYL-CoA O-METHYLTRANSFERASE (CCoAOMT), and their corresponding wild type were pyrolysed in a Py-GC/MS. This work aims at capturing the effects of downregulation of the three enzymes on bio-oil composition using principal component analysis (PCA). 3,5-methoxytoluene, vanillin, coniferyl alcohol, 4-vinyl guaiacol, syringol, syringaldehyde, and guaiacol are the determining factors in the PCA analysis that are the substantially affected by COMT, CAD and CCoAOMT enzyme downregulation. COMT and CAD downregulated transgenic lines proved to be statistically different from the wild type because of a substantial difference in S and G lignin units. The sCAD line lead to a significant drop (nearly 51%) in S-lignin derived compounds, while CCoAOMT downregulation affected the least (7-11%). Further, removal of extractives via pretreatment enhanced the statistical differences among the CAD transgenic lines and its wild type. On the other hand, COMT downregulation caused 2-fold reduction in S-derived compounds compared to G-derived compounds. This study manifests the applicability of PCA analysis in tracking the biological changes in biomass (poplar in this case) and their effects on pyrolysis-oil compositions.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Comput Struct Biotechnol J Año: 2019 Tipo del documento: Article País de afiliación: Bélgica

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Comput Struct Biotechnol J Año: 2019 Tipo del documento: Article País de afiliación: Bélgica