Your browser doesn't support javascript.
loading
Sub-phenotyping Metabolic Disorders Using Body Composition: An Individualized, Nonparametric Approach Utilizing Large Data Sets.
Linge, Jennifer; Whitcher, Brandon; Borga, Magnus; Dahlqvist Leinhard, Olof.
Afiliación
  • Linge J; AMRA Medical AB, Linköping, Sweden.
  • Whitcher B; AMRA Medical AB, Linköping, Sweden.
  • Borga M; Research Centre for Optimal Health, University of Westminster, London, UK.
  • Dahlqvist Leinhard O; AMRA Medical AB, Linköping, Sweden.
Obesity (Silver Spring) ; 27(7): 1190-1199, 2019 07.
Article en En | MEDLINE | ID: mdl-31094076
OBJECTIVE: This study performed individual-centric, data-driven calculations of propensity for coronary heart disease (CHD) and type 2 diabetes (T2D), utilizing magnetic resonance imaging-acquired body composition measurements, for sub-phenotyping of obesity and nonalcoholic fatty liver disease (NAFLD). METHODS: A total of 10,019 participants from the UK Biobank imaging substudy were included and analyzed for visceral and abdominal subcutaneous adipose tissue, muscle fat infiltration, and liver fat. An adaption of the k-nearest neighbors algorithm was applied to the imaging variable space to calculate individualized CHD and T2D propensity and explore metabolic sub-phenotyping within obesity and NAFLD. RESULTS: The ranges of CHD and T2D propensity for the whole cohort were 1.3% to 58.0% and 0.6% to 42.0%, respectively. The diagnostic performance, area under the receiver operating characteristic curve (95% CI), using disease propensities for CHD and T2D detection was 0.75 (0.73-0.77) and 0.79 (0.77-0.81). Exploring individualized disease propensity, CHD phenotypes, T2D phenotypes, comorbid phenotypes, and metabolically healthy phenotypes were found within obesity and NAFLD. CONCLUSIONS: The adaptive k-nearest neighbors algorithm allowed an individual-centric assessment of each individual's metabolic phenotype moving beyond discrete categorizations of body composition. Within obesity and NAFLD, this may help in identifying which comorbidities a patient may develop and consequently enable optimization of treatment.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Composición Corporal Tipo de estudio: Etiology_studies / Incidence_studies / Observational_studies / Prevalence_studies / Prognostic_studies / Risk_factors_studies Límite: Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Obesity (Silver Spring) Asunto de la revista: CIENCIAS DA NUTRICAO / FISIOLOGIA / METABOLISMO Año: 2019 Tipo del documento: Article País de afiliación: Suecia Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Composición Corporal Tipo de estudio: Etiology_studies / Incidence_studies / Observational_studies / Prevalence_studies / Prognostic_studies / Risk_factors_studies Límite: Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Obesity (Silver Spring) Asunto de la revista: CIENCIAS DA NUTRICAO / FISIOLOGIA / METABOLISMO Año: 2019 Tipo del documento: Article País de afiliación: Suecia Pais de publicación: Estados Unidos