Your browser doesn't support javascript.
loading
Myeloid Cell-Derived HB-EGF Drives Tissue Recovery After Pancreatitis.
Wen, Hui-Ju; Gao, Shan; Wang, Yin; Ray, Michael; Magnuson, Mark A; Wright, Christopher V E; Di Magliano, Marina Pasca; Frankel, Timothy L; Crawford, Howard C.
Afiliación
  • Wen HJ; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan.
  • Gao S; Department of Gastroenterology, The Second Xiangya Hospital, Central South University, China.
  • Wang Y; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan.
  • Ray M; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee.
  • Magnuson MA; Department of Molecular Physiology and Biophysics, Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee.
  • Wright CVE; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee.
  • Di Magliano MP; Department of Surgery, University of Michigan, Ann Arbor, Michigan; Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan.
  • Frankel TL; Department of Surgery, University of Michigan, Ann Arbor, Michigan.
  • Crawford HC; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan; Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan. Electronic address: howcraw@umich.edu.
Cell Mol Gastroenterol Hepatol ; 8(2): 173-192, 2019.
Article en En | MEDLINE | ID: mdl-31125624
ABSTRACT
BACKGROUND &

AIMS:

Pancreatitis is a major cause of morbidity and mortality and is a risk factor for pancreatic tumorigenesis. Upon tissue damage, an inflammatory response, made up largely of macrophages, provides multiple growth factors that promote repair. Here, we examine the molecular pathways initiated by macrophages to promote pancreas recovery from pancreatitis.

METHODS:

To induce organ damage, mice were subjected to cerulein-induced experimental pancreatitis and analyzed at various times of recovery. CD11b-DTR mice were used to deplete myeloid cells. Hbegff/f;LysM-Cre mice were used to ablate myeloid cell-derived heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF). To ablate EGFR specifically during recovery, pancreatitis was induced in Egfrf/f;Ptf1aFlpO/+;FSF-Rosa26CAG-CreERT2 mice followed by tamoxifen treatment.

RESULTS:

Macrophages infiltrating the pancreas in experimental pancreatitis make high levels of HB-EGF. Both depletion of myeloid cells and ablation of myeloid cell HB-EGF delayed recovery from experimental pancreatitis, resulting from a decrease in cell proliferation and an increase in apoptosis. Mechanistically, ablation of myeloid cell HB-EGF impaired epithelial cell DNA repair, ultimately leading to cell death. Soluble HB-EGF induced EGFR nuclear translocation and methylation of histone H4, facilitating resolution of DNA damage in pancreatic acinar cells in vitro. Consistent with its role as the primary receptor of HB-EGF, in vivo ablation of EGFR from pancreatic epithelium during recovery from pancreatitis resulted in accumulation of DNA damage.

CONCLUSIONS:

By using novel conditional knockout mouse models, we determined that HB-EGF derived exclusively from myeloid cells induces epithelial cell proliferation and EGFR-dependent DNA repair, facilitating pancreas healing after injury.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Páncreas / Pancreatitis / Regeneración / Células Mieloides / Reparación del ADN / Factor de Crecimiento Similar a EGF de Unión a Heparina Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals Idioma: En Revista: Cell Mol Gastroenterol Hepatol Año: 2019 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Páncreas / Pancreatitis / Regeneración / Células Mieloides / Reparación del ADN / Factor de Crecimiento Similar a EGF de Unión a Heparina Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals Idioma: En Revista: Cell Mol Gastroenterol Hepatol Año: 2019 Tipo del documento: Article
...