Your browser doesn't support javascript.
loading
Functional analysis of the GbDWARF14 gene associated with branching development in cotton.
Wang, Ping; Zhang, Sai; Qiao, Jing; Sun, Quan; Shi, Qian; Cai, Chaowei; Mo, Jianchuan; Chu, Zongyan; Yuan, Youlu; Du, Xiongming; Miao, Yuchen; Zhang, Xiao; Cai, Yingfan.
Afiliación
  • Wang P; State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Bioinformatics Center, School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China.
  • Zhang S; State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Bioinformatics Center, School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China.
  • Qiao J; State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Bioinformatics Center, School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China.
  • Sun Q; College of Bioinformation, Chongqing University of Posts and Telecommunications, Chongqing, China.
  • Shi Q; State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Bioinformatics Center, School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China.
  • Cai C; State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Bioinformatics Center, School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China.
  • Mo J; State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Bioinformatics Center, School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China.
  • Chu Z; Kaifeng Academy of Agriculture and Forestry, Kaifeng, China.
  • Yuan Y; State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China.
  • Du X; State Key Laboratory of Cotton Biology, Key Laboratory of Cotton Genetic Improvement, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China.
  • Miao Y; State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Bioinformatics Center, School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China.
  • Zhang X; State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Bioinformatics Center, School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China.
  • Cai Y; State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Bioinformatics Center, School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China.
PeerJ ; 7: e6901, 2019.
Article en En | MEDLINE | ID: mdl-31143538
ABSTRACT
Plant architecture, including branching pattern, is an important agronomic trait of cotton crops. In recent years, strigolactones (SLs) have been considered important plant hormones that regulate branch development. In some species such as Arabidopsis, DWARF14 is an unconventional receptor that plays an important role in the SL signaling pathway. However, studies on SL receptors in cotton are still lacking. Here, we cloned and analysed the structure of the GbD14 gene in Gossypium barbadense and found that it contains the domains necessary for a SL receptor. The GbD14 gene was expressed primarily in the roots, leaves and vascular bundles, and the GbD14 protein was determined via GFP to localize to the cytoplasm and nucleus. Gene expression analysis revealed that the GbD14 gene not only responded to SL signals but also was differentially expressed between cotton plants whose types of branching differed. In particular, GbD14 was expressed mainly in the axillary buds of normal-branching cotton, while it was expressed the most in the leaves of nulliplex-branch cotton. In cotton, the GbD14 gene can be induced by SL and other plant hormones, such as indoleacetic acid, abscisic acid, and jasmonic acid. Compared with wild-type Arabidopsis, GbD14-overexpressing Arabidopsis responded more rapidly to SL signals. Moreover, we also found that GbD14 can rescue the multi-branched phenotype of Arabidopsis Atd14 mutants. Our results indicate that the function of GbD14 is similar to that of AtD14, and GbD14 may be a receptor for SL in cotton and involved in regulating branch development. This research provides a theoretical basis for a profound understanding of the molecular mechanism of branch development and ideal plant architecture for cotton breeding improvements.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Risk_factors_studies Idioma: En Revista: PeerJ Año: 2019 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Risk_factors_studies Idioma: En Revista: PeerJ Año: 2019 Tipo del documento: Article País de afiliación: China