Your browser doesn't support javascript.
loading
Circulating Levels of Interferon Regulatory Factor-5 Associates With Subgroups of Systemic Lupus Erythematosus Patients.
Idborg, Helena; Zandian, Arash; Ossipova, Elena; Wigren, Edvard; Preger, Charlotta; Mobarrez, Fariborz; Checa, Antonio; Sohrabian, Azita; Pucholt, Pascal; Sandling, Johanna K; Fernandes-Cerqueira, Cátia; Rönnelid, Johan; Oke, Vilija; Grosso, Giorgia; Kvarnström, Marika; Larsson, Anders; Wheelock, Craig E; Syvänen, Ann-Christine; Rönnblom, Lars; Kultima, Kim; Persson, Helena; Gräslund, Susanne; Gunnarsson, Iva; Nilsson, Peter; Svenungsson, Elisabet; Jakobsson, Per-Johan.
Afiliación
  • Idborg H; Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
  • Zandian A; SciLifeLab, Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden.
  • Ossipova E; Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
  • Wigren E; Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
  • Preger C; Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
  • Mobarrez F; Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
  • Checa A; Department of Medical Sciences, Akademiska Hospital, Uppsala University, Uppsala, Sweden.
  • Sohrabian A; Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
  • Pucholt P; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
  • Sandling JK; Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden.
  • Fernandes-Cerqueira C; Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden.
  • Rönnelid J; Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
  • Oke V; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
  • Grosso G; Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
  • Kvarnström M; Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
  • Larsson A; Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
  • Wheelock CE; Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden.
  • Syvänen AC; Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
  • Rönnblom L; Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
  • Kultima K; Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden.
  • Persson H; Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden.
  • Gräslund S; Science for Life Laboratory, Drug Discovery and Development & School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
  • Gunnarsson I; Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
  • Nilsson P; Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
  • Svenungsson E; SciLifeLab, Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden.
  • Jakobsson PJ; Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
Front Immunol ; 10: 1029, 2019.
Article en En | MEDLINE | ID: mdl-31156624
ABSTRACT
Systemic Lupus Erythematosus (SLE) is a heterogeneous autoimmune disease, which currently lacks specific diagnostic biomarkers. The diversity within the patients obstructs clinical trials but may also reflect differences in underlying pathogenesis. Our objective was to obtain protein profiles to identify potential general biomarkers of SLE and to determine molecular subgroups within SLE for patient stratification. Plasma samples from a cross-sectional study of well-characterized SLE patients (n = 379) and matched population controls (n = 316) were analyzed by antibody suspension bead array targeting 281 proteins. To investigate the differences between SLE and controls, Mann-Whitney U-test with Bonferroni correction, generalized linear modeling and receiver operating characteristics (ROC) analysis were performed. K-means clustering was used to identify molecular SLE subgroups. We identified Interferon regulating factor 5 (IRF5), solute carrier family 22 member 2 (SLC22A2) and S100 calcium binding protein A12 (S100A12) as the three proteins with the largest fold change between SLE patients and controls (SLE/Control = 1.4, 1.4, and 1.2 respectively). The lowest p-values comparing SLE patients and controls were obtained for S100A12, Matrix metalloproteinase-1 (MMP1) and SLC22A2 (padjusted = 3 × 10-9, 3 × 10-6, and 5 × 10-6 respectively). In a set of 15 potential biomarkers differentiating SLE patients and controls, two of the proteins were transcription factors, i.e., IRF5 and SAM pointed domain containing ETS transcription factor (SPDEF). IRF5 was up-regulated while SPDEF was found to be down-regulated in SLE patients. Unsupervised clustering of all investigated proteins identified three molecular subgroups among SLE patients, characterized by (1) high levels of rheumatoid factor-IgM, (2) low IRF5, and (3) high IRF5. IRF5 expressing microparticles were analyzed by flow cytometry in a subset of patients to confirm the presence of IRF5 in plasma and detection of extracellular IRF5 was further confirmed by immunoprecipitation-mass spectrometry (IP-MS). Interestingly IRF5, a known genetic risk factor for SLE, was detected extracellularly and suggested by unsupervised clustering analysis to differentiate between SLE subgroups. Our results imply a set of circulating molecules as markers of possible pathogenic importance in SLE. We believe that these findings could be of relevance for understanding the pathogenesis and diversity of SLE, as well as for selection of patients in clinical trials.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Biomarcadores / Factores Reguladores del Interferón / Proteína S100A12 / Transportador 2 de Cátion Orgánico / Lupus Eritematoso Sistémico Tipo de estudio: Observational_studies / Prevalence_studies / Prognostic_studies / Risk_factors_studies Límite: Adult / Female / Humans / Male / Middle aged Idioma: En Revista: Front Immunol Año: 2019 Tipo del documento: Article País de afiliación: Suecia Pais de publicación: CH / SUIZA / SUÍÇA / SWITZERLAND

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Biomarcadores / Factores Reguladores del Interferón / Proteína S100A12 / Transportador 2 de Cátion Orgánico / Lupus Eritematoso Sistémico Tipo de estudio: Observational_studies / Prevalence_studies / Prognostic_studies / Risk_factors_studies Límite: Adult / Female / Humans / Male / Middle aged Idioma: En Revista: Front Immunol Año: 2019 Tipo del documento: Article País de afiliación: Suecia Pais de publicación: CH / SUIZA / SUÍÇA / SWITZERLAND