General Approach to Produce Nanostructured Binary Transition Metal Selenides as High-Performance Sodium Ion Battery Anodes.
Small
; 15(33): e1901995, 2019 Aug.
Article
en En
| MEDLINE
| ID: mdl-31169987
Multiple transition metals containing chalcogenides have recently drawn boosted attraction as anodes for sodium ion batteries (SIBs). Their greatly enhanced electrochemical performances can be attributed to the superior intrinsic conductivities and richer redox reactions, comparative to mono metal chalcogenides. To employ various binary metals comprising selenides (B-TMSs) for SIBs, discovery of a simplistic, scalable and universal synthesis approach is highly desirable. Herein, a simple, facile, and comprehensive strategy to produce various combinations of nanostructured B-TMSs is presented. As a proof of concept, optimized, high surface area bearing, and hierarchical nanosheets of iron-nickel selenide (FNSe), iron-cobalt selenide, and nickel-cobalt selenide are produced and employed in SIBs. These B-TMSs exhibit adequately high energy capacities, excellent rate capabilities, and an extraordinarily stable life of 2600 cycles. As far as it is known, it is the first work to discuss sodium storage of FNSe, so various in situ and ex situ battery analyses are carried out to probe the sodium storage mechanism. When employed in sodium full batteries, these B-TMSs present reasonably high reversible specific capacities even after 100 cycles. Overall, the presented strategy will pave the way for facile synthesis of numerous binary transition metal chalcogenides that are the potential materials for energy storage and conversion systems.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Small
Asunto de la revista:
ENGENHARIA BIOMEDICA
Año:
2019
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Alemania