Your browser doesn't support javascript.
loading
Computational evaluation of the reactivity and pharmaceutical potential of an organic amine: A DFT, molecular dynamics simulations and molecular docking approach.
Abraham, Christina Susan; Muthu, S; Prasana, Johanan Christian; Armakovic, Stevan; Armakovic, Sanja J; Rizwana B, Fathima; Geoffrey, Ben; David R, Host Antony.
Afiliación
  • Abraham CS; Department of Physics, Madras Christian College, East Tambaram 600059, Tamil Nadu, India.
  • Muthu S; Department of Physics, Arignar Anna Government Arts College, Cheyyar 604407, Tamil Nadu, India. Electronic address: mutgee@gmail.com.
  • Prasana JC; Department of Physics, Madras Christian College, East Tambaram 600059, Tamil Nadu, India.
  • Armakovic S; University of Novi Sad, Faculty of Sciences, Department of Physics, Trg D. Obradovica 4, 21000 Novi Sad, Serbia.
  • Armakovic SJ; University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg D. Obradovica 3, 21000 Novi Sad, Serbia.
  • Rizwana B F; Department of Physics, Madras Christian College, East Tambaram 600059, Tamil Nadu, India.
  • Geoffrey B; Department of Physics, Madras Christian College, East Tambaram 600059, Tamil Nadu, India.
  • David R HA; Bioinformatics center of BITSnet, Madras Christian College, East Tambaram 600059, Tamil Nadu, India.
Spectrochim Acta A Mol Biomol Spectrosc ; 222: 117188, 2019 Nov 05.
Article en En | MEDLINE | ID: mdl-31176999
2-[N-(carboxymethyl)anilino] acetic acid (PIDAA) molecule has been spectroscopically characterized and computationally investigated for its fundamental reactive properties by a combination of density functional theory (DFT) calculations, molecular dynamics (MD) simulations and molecular docking procedure. A comparison drawn between the simulated and experimentally attained spectra by FT-Raman and FT-IR showed concurrence. The natural bond orbital (NBO) analysis enabled in comprehending the stability and charge delocalization in the title molecule. The first hyperpolarizability which is an important parameter for future studies of nonlinear optics (NLO) was calculated to check the potential of the molecule to be an NLO material. Besides, frontier molecular orbitals (FMO), electron localization function (ELF) and localized orbital locator (LOL) analysis were performed. Energy gap (ΔE), electronegativity (χ), chemical potential (µ), global hardness (η), softness (S), Mulliken population analysis on atomic charges and thermodynamic properties of the title compound at different temperatures have been calculated. The local reactive properties of PIDAA have been addressed by MEP and ALIE surfaces, together with bond dissociation energy for hydrogen abstraction (H-BDE). MD simulations have been used in order to identify atoms with pronounced interactions with water molecules. The pharmaceutical potential of PIDAA has been considered by the analysis of drug likeness parameters and molecular docking procedure. The biological activity of the molecule in terms of molecular docking has been analyzed theoretically for the treatment of SARS and minimum binding energy calculated. The Ramachandran plot was used to check the stereochemistry of the protein structure. In addition, a comparison of the physiochemical parameters of PIDAA and commercially available drugs (Yu et al., 2004; Tan et al., 2004; Elshabrawy et al., 2014; Chu et al., 2004; Gopal Samy and Xavier, 2015) were carried out.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Compuestos de Anilina Idioma: En Revista: Spectrochim Acta A Mol Biomol Spectrosc Asunto de la revista: BIOLOGIA MOLECULAR Año: 2019 Tipo del documento: Article País de afiliación: India Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Compuestos de Anilina Idioma: En Revista: Spectrochim Acta A Mol Biomol Spectrosc Asunto de la revista: BIOLOGIA MOLECULAR Año: 2019 Tipo del documento: Article País de afiliación: India Pais de publicación: Reino Unido