Your browser doesn't support javascript.
loading
Modelling net energy of commercial cat diets.
Asaro, Natalie J; Seymour, David J; Mansilla, Wilfredo D; Cant, John P; Zijlstra, Ruurd T; Berendt, Kimberley D; Brewer, Jason; Shoveller, Anna K.
Afiliación
  • Asaro NJ; Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada.
  • Seymour DJ; Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada.
  • Mansilla WD; Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada.
  • Cant JP; Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada.
  • Zijlstra RT; Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada.
  • Berendt KD; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
  • Brewer J; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
  • Shoveller AK; Royal Canin, Mars Pet Care, Lewisburg, Ohio, United States of America.
PLoS One ; 14(6): e0218173, 2019.
Article en En | MEDLINE | ID: mdl-31185052
ABSTRACT
Net energy accounts for the proportion of energy expenditure attributed to the digestion, metabolism, and absorption of ingested food. Currently, there are no models available to predict net energy density of food for domestic cats. Therefore, the objectives of this study were to measure the heat increment of feeding in cats, and to model the net energy of commercial diets. Metabolizable energy and calorimetry data from two previous studies was reanalyzed to create net energy models in the present study. Energy expenditure was calculated using measurements of CO2 production and O2 consumption. Net energy was determined as the metabolizable energy of the diets minus the heat increment of feeding. The heat increment of feeding was determined as the area under the energy expenditure curve above the resting fed metabolic rate. Eight net energy models were developed using metabolizable energy, 1 of 4 dietary parameters (crude protein, fat, fiber, and starch), and heat increment of feeding values from 0-2 h or 0-21 h. Two hours postprandial, and over the full calorimetry period, the heat increment of feeding amounted for 1.74, and 20.9% of the metabolizable energy, respectively. Of the models tested, the models using crude protein in combination with metabolizable energy as dietary parameters best fit the observed data, thus providing a more accurate estimate of dietary energy availability for cats.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ingestión de Energía / Metabolismo Energético / Alimentación Animal / Modelos Biológicos Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2019 Tipo del documento: Article País de afiliación: Canadá

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ingestión de Energía / Metabolismo Energético / Alimentación Animal / Modelos Biológicos Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2019 Tipo del documento: Article País de afiliación: Canadá