Gaussian process emulation to accelerate parameter estimation in a mechanical model of the left ventricle: a critical step towards clinical end-user relevance.
J R Soc Interface
; 16(156): 20190114, 2019 07 26.
Article
en En
| MEDLINE
| ID: mdl-31266415
In recent years, we have witnessed substantial advances in the mathematical modelling of the biomechanical processes underlying the dynamics of the cardiac soft-tissue. Gao et al. (Gao et al. 2017 J. R. Soc. Interface 14, 20170203 ( doi:10.1098/rsif.2017.0203 )) demonstrated that the parameters underlying the biomechanical model have diagnostic value for prognosticating the risk of myocardial infarction. However, the computational costs of parameter estimation are prohibitive when the goal lies in building real-time clinical decision support systems. This is due to the need to repeatedly solve the mathematical equations numerically using finite-element discretization during an iterative optimization routine. The present article presents a method for accelerating the inference of the constitutive parameters by using statistical emulation with Gaussian processes. We demonstrate how the computational costs can be reduced by about three orders of magnitude, with hardly any loss in accuracy, and we assess various alternative techniques in a comparative evaluation study based on simulated data obtained by solving the left ventricular model with the finite-element method, and real magnetic resonance images data for a human volunteer.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Simulación por Computador
/
Imagen por Resonancia Magnética
/
Ventrículos Cardíacos
/
Modelos Cardiovasculares
/
Infarto del Miocardio
Tipo de estudio:
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
J R Soc Interface
Año:
2019
Tipo del documento:
Article
País de afiliación:
Alemania
Pais de publicación:
Reino Unido