Your browser doesn't support javascript.
loading
BALLI: Bartlett-adjusted likelihood-based linear model approach for identifying differentially expressed genes with RNA-seq data.
Park, Kyungtaek; An, Jaehoon; Gim, Jungsoo; Seo, Minseok; Lee, Woojoo; Park, Taesung; Won, Sungho.
Afiliación
  • Park K; Interdisciplinary Program of Bioinformatics, Seoul National University, Seoul, 08826, South Korea.
  • An J; Department of Public Health Science, Seoul National University, Seoul, 08826, South Korea.
  • Gim J; Department of Biomedical Science, Chosun University, Gwangju, 61452, South Korea.
  • Seo M; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA.
  • Lee W; Department of Medicine, Harvard Medical School, Boston, MA, USA.
  • Park T; Department of Statistics, Inha University, Incheon, 22212, South Korea.
  • Won S; Interdisciplinary Program of Bioinformatics, Seoul National University, Seoul, 08826, South Korea.
BMC Genomics ; 20(1): 540, 2019 Jul 02.
Article en En | MEDLINE | ID: mdl-31266443
BACKGROUND: Transcriptomic profiles can improve our understanding of the phenotypic molecular basis of biological research, and many statistical methods have been proposed to identify differentially expressed genes (DEGs) under two or more conditions with RNA-seq data. However, statistical analyses with RNA-seq data are often limited by small sample sizes, and global variance estimates of RNA expression levels have been utilized as prior distributions for gene-specific variance estimates, making it difficult to generalize the methods to more complicated settings. We herein proposed a Bartlett-Adjusted Likelihood-based LInear mixed model approach (BALLI) to analyze more complicated RNA-seq data. The proposed method estimates the technical and biological variances with a linear mixed-effects model, with and without adjusting small sample bias using Bartlkett's corrections. RESULTS: We conducted extensive simulations to compare the performance of BALLI with those of existing approaches (edgeR, DESeq2, and voom). Results from the simulation studies showed that BALLI correctly controlled the type-1 error rates at various nominal significance levels and produced better statistical power and precision estimates than those of other competing methods in various scenarios. Furthermore, BALLI was robust to variation of library size. It was also successfully applied to Holstein milk yield data, illustrating its practical value. CONCLUSIONS;: BALLI is statistically more efficient and valid than existing methods, and we conclude that it is useful for identifying DEGs in RNA-seq analysis.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Bovinos / Modelos Lineales / Análisis de Secuencia de ARN / Biología Computacional / Perfilación de la Expresión Génica Límite: Animals Idioma: En Revista: BMC Genomics Asunto de la revista: GENETICA Año: 2019 Tipo del documento: Article País de afiliación: Corea del Sur Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Bovinos / Modelos Lineales / Análisis de Secuencia de ARN / Biología Computacional / Perfilación de la Expresión Génica Límite: Animals Idioma: En Revista: BMC Genomics Asunto de la revista: GENETICA Año: 2019 Tipo del documento: Article País de afiliación: Corea del Sur Pais de publicación: Reino Unido