Your browser doesn't support javascript.
loading
Lipid phosphatase SHIP-1 regulates chondrocyte hypertrophy and skeletal development.
So, Eui-Young; Sun, Changqi; Wu, Keith Q; Driesman, Adam; Leggett, Susan; Isaac, Mauricio; Spangler, Travis; Dubielecka-Szczerba, Patrycja M; Reginato, Anthony M; Liang, Olin D.
Afiliación
  • So EY; Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island.
  • Sun C; Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island.
  • Wu KQ; Division of Rheumatology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island.
  • Driesman A; Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island.
  • Leggett S; Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island.
  • Isaac M; Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island.
  • Spangler T; Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island.
  • Dubielecka-Szczerba PM; Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island.
  • Reginato AM; Department of Orthopaedics, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island.
  • Liang OD; Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island.
J Cell Physiol ; 235(2): 1425-1437, 2020 02.
Article en En | MEDLINE | ID: mdl-31287165
ABSTRACT
SH2-containing inositol-5'-phosphatase-1 (SHIP-1) controls the phosphatidylinositol-3'-kinase (PI3K) initiated signaling pathway by limiting cell membrane recruitment and activation of Akt. Despite the fact that many of the growth factors important to cartilage development and functions are able to activate the PI3K signal transduction pathway, little is known about the role of PI3K signaling in chondrocyte biology and its contribution to mammalian skeletogenesis. Here, we report that the lipid phosphatase SHIP-1 regulates chondrocyte hypertrophy and skeletal development through its expression in osteochondroprogenitor cells. Global SHIP-1 knockout led to accelerated chondrocyte hypertrophy and premature formation of the secondary ossification center in the bones of postnatal mice. Drastically higher vascularization and greater number of c-kit + progenitors associated with sinusoids in the bone marrow also indicated more advanced chondrocyte hypertrophic differentiation in SHIP-1 knockout mice than in wild-type mice. In corroboration with the in vivo phenotype, SHIP-1 deficient PDGFRα + Sca-1 + osteochondroprogenitor cells exhibited rapid differentiation into hypertrophic chondrocytes under chondrogenic culture conditions in vitro. Furthermore, SHIP-1 deficiency inhibited hypoxia-induced cellular activation of Akt and extracellular-signal-regulated kinase (Erk) and suppressed hypoxia-induced cell proliferation. These results suggest that SHIP-1 is required for hypoxia-induced growth signaling under physiological hypoxia in the bone marrow. In conclusion, the lipid phosphatase SHIP-1 regulates skeletal development by modulating chondrogenesis and the hypoxia response of the osteochondroprogenitors during endochondral bone formation.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Osteogénesis / Esqueleto / Diferenciación Celular / Condrocitos / Metabolismo de los Lípidos / Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas / Hipertrofia Límite: Animals Idioma: En Revista: J Cell Physiol Año: 2020 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Osteogénesis / Esqueleto / Diferenciación Celular / Condrocitos / Metabolismo de los Lípidos / Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas / Hipertrofia Límite: Animals Idioma: En Revista: J Cell Physiol Año: 2020 Tipo del documento: Article